Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201213252> ?p ?o ?g. }
- W3201213252 endingPage "117802" @default.
- W3201213252 startingPage "117802" @default.
- W3201213252 abstract "A professional point of view suggests that photovoltaic systems should be installed at the optimum tilt angle and orientation. However, in photovoltaic systems integrated in buildings the flexibility of installation is common. This paper is organized in two different parts. In the first one, the energy losses caused by deviations from the tilt angle (β) and the orientation (γ) of the installation in relation to the ideal position are evaluated. This work considers the cloudy-sky conditions in each locality and theoretically calculates by applying the Cavaleri’s principle, the energy losses. Ten cities around the world, in the northern hemisphere, have been studied with a MATLAB code and the findings demonstrate that non-ideal tilt and azimuth angles can also lead to acceptable levels of electric energy generation. A photovoltaic system installed in South orientation (γ=0°) and β deviations of up to 10 (°) in relation to the optimum tilt angle has a very small influence on the energy losses. The energy losses are: 5%, 10%, 15% and 20% when β deviations are respectively: 21–23 (°), 31–33 (°), 37–40 (°) and 43–47 (°). Then, in the second part, an important application of this previous outcome comes out: the best distribution of the photovoltaic modules on a flat roof of irregular shape of an urban building is achieved.The aim of this work is to maximize the amount of energy get by a photovoltaic system. This engineering problem is highly complex as it involves 10 variables: the available flat roof area, the shape and the orientation of the available flat roof area, the dimensions (length and width) of the commercial photovoltaic modules, the orientation and the position of the photovoltaic modules, the number of the photovoltaic modules, the minimum distances (maintenance operations, to avoid shadowing effects) between rows of photovoltaic modules, and the minimum distance to the terrace boundary. In this context, this work aims to present a study to assist the decision-making. This paper shows a packing algorithm (in Mathematica™) which maximizes the energy generation area of the solar photovoltaic system, considering shadings and distances required for maintenance. Eventually, using the initial study, it comes out the influence of β on the potential capacity of the solar photovoltaic system and it is demonstrated that a decrease in the optimal tilt angle results in an increase up to 24% in the amount of obtained energy keeping invariable the available area. For example, in Almeria, with an optimum tilt angle of 30.3 (°) the amount of obtained energy is 149.8 (MWh) while with a tilt angle of 14 (°) the amount of obtained energy is 186.2 (MWh). This analysis enables to find the optimal answer to the following practical questions: what number of photovoltaic modules is required?, which is the right position for the photovoltaic modules?, and what orientation of photovoltaic modules is the right one?. There are many installers of photovoltaic systems who would benefit from studies about this issue." @default.
- W3201213252 created "2021-09-27" @default.
- W3201213252 creator A5046537826 @default.
- W3201213252 creator A5059877177 @default.
- W3201213252 creator A5069326864 @default.
- W3201213252 creator A5076910063 @default.
- W3201213252 date "2022-01-01" @default.
- W3201213252 modified "2023-10-05" @default.
- W3201213252 title "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications" @default.
- W3201213252 cites W1965043343 @default.
- W3201213252 cites W1988568099 @default.
- W3201213252 cites W2001739176 @default.
- W3201213252 cites W2007952998 @default.
- W3201213252 cites W2020210648 @default.
- W3201213252 cites W2030216404 @default.
- W3201213252 cites W2049265265 @default.
- W3201213252 cites W2058956911 @default.
- W3201213252 cites W2068551223 @default.
- W3201213252 cites W2076491061 @default.
- W3201213252 cites W2119436188 @default.
- W3201213252 cites W2182995563 @default.
- W3201213252 cites W2591643705 @default.
- W3201213252 cites W2606169443 @default.
- W3201213252 cites W2620936255 @default.
- W3201213252 cites W2740006679 @default.
- W3201213252 cites W2747549503 @default.
- W3201213252 cites W2780554042 @default.
- W3201213252 cites W2791206346 @default.
- W3201213252 cites W2791475284 @default.
- W3201213252 cites W2793701767 @default.
- W3201213252 cites W2800644877 @default.
- W3201213252 cites W2801455285 @default.
- W3201213252 cites W2893898206 @default.
- W3201213252 cites W2897769009 @default.
- W3201213252 cites W2906924390 @default.
- W3201213252 cites W2921303529 @default.
- W3201213252 cites W2966340809 @default.
- W3201213252 cites W2967268479 @default.
- W3201213252 cites W2973234790 @default.
- W3201213252 cites W2974289820 @default.
- W3201213252 cites W2982213126 @default.
- W3201213252 cites W3007670643 @default.
- W3201213252 cites W3009969355 @default.
- W3201213252 cites W3014417291 @default.
- W3201213252 cites W3048808819 @default.
- W3201213252 cites W3084318985 @default.
- W3201213252 cites W3085768747 @default.
- W3201213252 cites W3089868719 @default.
- W3201213252 cites W3097604139 @default.
- W3201213252 cites W3122253632 @default.
- W3201213252 cites W70845299 @default.
- W3201213252 doi "https://doi.org/10.1016/j.apenergy.2021.117802" @default.
- W3201213252 hasPublicationYear "2022" @default.
- W3201213252 type Work @default.
- W3201213252 sameAs 3201213252 @default.
- W3201213252 citedByCount "22" @default.
- W3201213252 countsByYear W32012132522021 @default.
- W3201213252 countsByYear W32012132522022 @default.
- W3201213252 countsByYear W32012132522023 @default.
- W3201213252 crossrefType "journal-article" @default.
- W3201213252 hasAuthorship W3201213252A5046537826 @default.
- W3201213252 hasAuthorship W3201213252A5059877177 @default.
- W3201213252 hasAuthorship W3201213252A5069326864 @default.
- W3201213252 hasAuthorship W3201213252A5076910063 @default.
- W3201213252 hasConcept C10138342 @default.
- W3201213252 hasConcept C105795698 @default.
- W3201213252 hasConcept C119599485 @default.
- W3201213252 hasConcept C120665830 @default.
- W3201213252 hasConcept C121332964 @default.
- W3201213252 hasConcept C127413603 @default.
- W3201213252 hasConcept C159737794 @default.
- W3201213252 hasConcept C162324750 @default.
- W3201213252 hasConcept C16345878 @default.
- W3201213252 hasConcept C18762648 @default.
- W3201213252 hasConcept C198082294 @default.
- W3201213252 hasConcept C2524010 @default.
- W3201213252 hasConcept C2776748203 @default.
- W3201213252 hasConcept C2779844322 @default.
- W3201213252 hasConcept C2780598303 @default.
- W3201213252 hasConcept C33923547 @default.
- W3201213252 hasConcept C41291067 @default.
- W3201213252 hasConcept C541104983 @default.
- W3201213252 hasConcept C66938386 @default.
- W3201213252 hasConcept C78519656 @default.
- W3201213252 hasConceptScore W3201213252C10138342 @default.
- W3201213252 hasConceptScore W3201213252C105795698 @default.
- W3201213252 hasConceptScore W3201213252C119599485 @default.
- W3201213252 hasConceptScore W3201213252C120665830 @default.
- W3201213252 hasConceptScore W3201213252C121332964 @default.
- W3201213252 hasConceptScore W3201213252C127413603 @default.
- W3201213252 hasConceptScore W3201213252C159737794 @default.
- W3201213252 hasConceptScore W3201213252C162324750 @default.
- W3201213252 hasConceptScore W3201213252C16345878 @default.
- W3201213252 hasConceptScore W3201213252C18762648 @default.
- W3201213252 hasConceptScore W3201213252C198082294 @default.
- W3201213252 hasConceptScore W3201213252C2524010 @default.
- W3201213252 hasConceptScore W3201213252C2776748203 @default.
- W3201213252 hasConceptScore W3201213252C2779844322 @default.