Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201213858> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3201213858 abstract "We aim at the development and analysis of the numerical schemes for approximately solving the backward diffusion-wave problem, which involves a fractional derivative in time with order $alphain(1,2)$. From terminal observations at two time levels, i.e., $u(T_1)$ and $u(T_2)$, we simultaneously recover two initial data $u(0)$ and $u_t(0)$ and hence the solution $u(t)$ for all $t > 0$. First of all, existence, uniqueness and Lipschitz stability of the backward diffusion-wave problem were established under some conditions about $T_1$ and $T_2$. Moreover, for noisy data, we propose a quasi-boundary value scheme to regularize the mildly ill-posed problem, and show the convergence of the regularized solution. Next, to numerically solve the regularized problem, a fully discrete scheme is proposed by applying finite element method in space and convolution quadrature in time. We establish error bounds of the discrete solution in both cases of smooth and nonsmooth data. The error estimate is very useful in practice since it indicates the way to choose discretization parameters and regularization parameter, according to the noise level. The theoretical results are supported by numerical experiments." @default.
- W3201213858 created "2021-09-27" @default.
- W3201213858 creator A5002445122 @default.
- W3201213858 creator A5020691185 @default.
- W3201213858 date "2021-09-15" @default.
- W3201213858 modified "2023-09-26" @default.
- W3201213858 title "Backward diffusion-wave problem: stability, regularization and approximation" @default.
- W3201213858 cites W1560185428 @default.
- W3201213858 cites W1584611818 @default.
- W3201213858 cites W1976739005 @default.
- W3201213858 cites W1978894707 @default.
- W3201213858 cites W1991982189 @default.
- W3201213858 cites W1998214447 @default.
- W3201213858 cites W2004097100 @default.
- W3201213858 cites W2016533177 @default.
- W3201213858 cites W2016755336 @default.
- W3201213858 cites W2018348423 @default.
- W3201213858 cites W2041540906 @default.
- W3201213858 cites W2048909372 @default.
- W3201213858 cites W2053946502 @default.
- W3201213858 cites W2060526862 @default.
- W3201213858 cites W2063879575 @default.
- W3201213858 cites W2071268148 @default.
- W3201213858 cites W2073659542 @default.
- W3201213858 cites W2079961897 @default.
- W3201213858 cites W2082621526 @default.
- W3201213858 cites W2091313463 @default.
- W3201213858 cites W2111271983 @default.
- W3201213858 cites W2118288723 @default.
- W3201213858 cites W2155216327 @default.
- W3201213858 cites W2259227674 @default.
- W3201213858 cites W2274070693 @default.
- W3201213858 cites W2401294069 @default.
- W3201213858 cites W2571966495 @default.
- W3201213858 cites W2593135059 @default.
- W3201213858 cites W2601627861 @default.
- W3201213858 cites W2775629852 @default.
- W3201213858 cites W2793231285 @default.
- W3201213858 cites W2799821673 @default.
- W3201213858 cites W2889152654 @default.
- W3201213858 cites W2891433006 @default.
- W3201213858 cites W2963309992 @default.
- W3201213858 cites W2964137115 @default.
- W3201213858 cites W2965179154 @default.
- W3201213858 cites W2974367856 @default.
- W3201213858 cites W2991946954 @default.
- W3201213858 cites W3013039183 @default.
- W3201213858 cites W3016623442 @default.
- W3201213858 cites W3045832647 @default.
- W3201213858 cites W3090140460 @default.
- W3201213858 cites W3098178380 @default.
- W3201213858 cites W3105974935 @default.
- W3201213858 doi "https://doi.org/10.48550/arxiv.2109.07114" @default.
- W3201213858 hasPublicationYear "2021" @default.
- W3201213858 type Work @default.
- W3201213858 sameAs 3201213858 @default.
- W3201213858 citedByCount "0" @default.
- W3201213858 crossrefType "posted-content" @default.
- W3201213858 hasAuthorship W3201213858A5002445122 @default.
- W3201213858 hasAuthorship W3201213858A5020691185 @default.
- W3201213858 hasBestOaLocation W32012138581 @default.
- W3201213858 hasConcept C134306372 @default.
- W3201213858 hasConcept C135252773 @default.
- W3201213858 hasConcept C154945302 @default.
- W3201213858 hasConcept C22324862 @default.
- W3201213858 hasConcept C2776135515 @default.
- W3201213858 hasConcept C2777021972 @default.
- W3201213858 hasConcept C28826006 @default.
- W3201213858 hasConcept C33923547 @default.
- W3201213858 hasConcept C41008148 @default.
- W3201213858 hasConcept C73000952 @default.
- W3201213858 hasConceptScore W3201213858C134306372 @default.
- W3201213858 hasConceptScore W3201213858C135252773 @default.
- W3201213858 hasConceptScore W3201213858C154945302 @default.
- W3201213858 hasConceptScore W3201213858C22324862 @default.
- W3201213858 hasConceptScore W3201213858C2776135515 @default.
- W3201213858 hasConceptScore W3201213858C2777021972 @default.
- W3201213858 hasConceptScore W3201213858C28826006 @default.
- W3201213858 hasConceptScore W3201213858C33923547 @default.
- W3201213858 hasConceptScore W3201213858C41008148 @default.
- W3201213858 hasConceptScore W3201213858C73000952 @default.
- W3201213858 hasLocation W32012138581 @default.
- W3201213858 hasOpenAccess W3201213858 @default.
- W3201213858 hasPrimaryLocation W32012138581 @default.
- W3201213858 hasRelatedWork W1671519656 @default.
- W3201213858 hasRelatedWork W1972272478 @default.
- W3201213858 hasRelatedWork W2092640016 @default.
- W3201213858 hasRelatedWork W2120707518 @default.
- W3201213858 hasRelatedWork W2159417485 @default.
- W3201213858 hasRelatedWork W3005895990 @default.
- W3201213858 hasRelatedWork W3212548898 @default.
- W3201213858 hasRelatedWork W4226101702 @default.
- W3201213858 hasRelatedWork W4298328014 @default.
- W3201213858 hasRelatedWork W4306159239 @default.
- W3201213858 isParatext "false" @default.
- W3201213858 isRetracted "false" @default.
- W3201213858 magId "3201213858" @default.
- W3201213858 workType "article" @default.