Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201214583> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3201214583 endingPage "167" @default.
- W3201214583 startingPage "145" @default.
- W3201214583 abstract "We propose a framework for complex event processing (CEP) coupled with predictive analytics to predict simple events and complex events on Internet of Things (IoT) data streams. The data is consumed through a REST service containing the traffic data of around 2,000 locations in the city of Madrid, Spain. This prediction of complex events will help users in understanding the future state of road traffic and hence take meaningful decisions. For predicting events, we propose a framework that uses WSO2 Siddhi as CEP, along with InfluxDB as persistent storage. The data is consumed in the CEP with the help of a high-speed Apache Kafka messaging pipeline. This data is used to build predictive models inside the CEP that helps users to derive meaningful insights. However, in these event analytics engines, the events are created via rules that are triggered when the streaming data exceeds a certain threshold. The calculation of the “threshold” is utmost necessary as it acts as the means for the generation of simple events and complex events in an event analytics scenario. We have proposed a novel 2-fold approach for finding out the thresholds in such large datasets. We have taken the help of unsupervised learning to get the idea of thresholds. The first phase uses Node-RED and serverless computing to create the thresholds and then supply them back to the CEP for prediction. The machine learning models run on a cloud service, and the predictions or thresholds are returned back through REST services into the CEP. In the second phase, it not only creates the thresholds but also uses novel hypothesis testing techniques along with windowing mechanism on data streams to implement clustering and supply the result back into the CEP. This approach leverages on the usage of statistical techniques to understand the change in distribution of data. The changes in the data distributions trigger the retraining of the machine learning models, and the results are given back into the CEP for being used in an event generation scenario. We have also included a section in which we have incorporated a statistical analysis on the dataset used." @default.
- W3201214583 created "2021-09-27" @default.
- W3201214583 creator A5063245652 @default.
- W3201214583 creator A5069851219 @default.
- W3201214583 date "2021-07-07" @default.
- W3201214583 modified "2023-09-23" @default.
- W3201214583 title "Analyzing events for traffic prediction on IoT data streams in a smart city scenario" @default.
- W3201214583 doi "https://doi.org/10.1049/pbpc037g_ch7" @default.
- W3201214583 hasPublicationYear "2021" @default.
- W3201214583 type Work @default.
- W3201214583 sameAs 3201214583 @default.
- W3201214583 citedByCount "0" @default.
- W3201214583 crossrefType "book-chapter" @default.
- W3201214583 hasAuthorship W3201214583A5063245652 @default.
- W3201214583 hasAuthorship W3201214583A5069851219 @default.
- W3201214583 hasConcept C111472728 @default.
- W3201214583 hasConcept C111919701 @default.
- W3201214583 hasConcept C119857082 @default.
- W3201214583 hasConcept C121332964 @default.
- W3201214583 hasConcept C123606473 @default.
- W3201214583 hasConcept C124101348 @default.
- W3201214583 hasConcept C136264566 @default.
- W3201214583 hasConcept C138885662 @default.
- W3201214583 hasConcept C162324750 @default.
- W3201214583 hasConcept C199360897 @default.
- W3201214583 hasConcept C2522767166 @default.
- W3201214583 hasConcept C2779662365 @default.
- W3201214583 hasConcept C2780378061 @default.
- W3201214583 hasConcept C2780586882 @default.
- W3201214583 hasConcept C41008148 @default.
- W3201214583 hasConcept C43521106 @default.
- W3201214583 hasConcept C62520636 @default.
- W3201214583 hasConcept C75684735 @default.
- W3201214583 hasConcept C79158427 @default.
- W3201214583 hasConcept C79403827 @default.
- W3201214583 hasConcept C79974875 @default.
- W3201214583 hasConcept C83209312 @default.
- W3201214583 hasConcept C89198739 @default.
- W3201214583 hasConcept C98045186 @default.
- W3201214583 hasConceptScore W3201214583C111472728 @default.
- W3201214583 hasConceptScore W3201214583C111919701 @default.
- W3201214583 hasConceptScore W3201214583C119857082 @default.
- W3201214583 hasConceptScore W3201214583C121332964 @default.
- W3201214583 hasConceptScore W3201214583C123606473 @default.
- W3201214583 hasConceptScore W3201214583C124101348 @default.
- W3201214583 hasConceptScore W3201214583C136264566 @default.
- W3201214583 hasConceptScore W3201214583C138885662 @default.
- W3201214583 hasConceptScore W3201214583C162324750 @default.
- W3201214583 hasConceptScore W3201214583C199360897 @default.
- W3201214583 hasConceptScore W3201214583C2522767166 @default.
- W3201214583 hasConceptScore W3201214583C2779662365 @default.
- W3201214583 hasConceptScore W3201214583C2780378061 @default.
- W3201214583 hasConceptScore W3201214583C2780586882 @default.
- W3201214583 hasConceptScore W3201214583C41008148 @default.
- W3201214583 hasConceptScore W3201214583C43521106 @default.
- W3201214583 hasConceptScore W3201214583C62520636 @default.
- W3201214583 hasConceptScore W3201214583C75684735 @default.
- W3201214583 hasConceptScore W3201214583C79158427 @default.
- W3201214583 hasConceptScore W3201214583C79403827 @default.
- W3201214583 hasConceptScore W3201214583C79974875 @default.
- W3201214583 hasConceptScore W3201214583C83209312 @default.
- W3201214583 hasConceptScore W3201214583C89198739 @default.
- W3201214583 hasConceptScore W3201214583C98045186 @default.
- W3201214583 hasLocation W32012145831 @default.
- W3201214583 hasOpenAccess W3201214583 @default.
- W3201214583 hasPrimaryLocation W32012145831 @default.
- W3201214583 hasRelatedWork W1129062671 @default.
- W3201214583 hasRelatedWork W1563794669 @default.
- W3201214583 hasRelatedWork W2751878509 @default.
- W3201214583 hasRelatedWork W2789808614 @default.
- W3201214583 hasRelatedWork W3097243301 @default.
- W3201214583 hasRelatedWork W3171568351 @default.
- W3201214583 hasRelatedWork W3201214583 @default.
- W3201214583 hasRelatedWork W3215629042 @default.
- W3201214583 hasRelatedWork W4287605407 @default.
- W3201214583 hasRelatedWork W2187270050 @default.
- W3201214583 isParatext "false" @default.
- W3201214583 isRetracted "false" @default.
- W3201214583 magId "3201214583" @default.
- W3201214583 workType "book-chapter" @default.