Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201220588> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3201220588 endingPage "155" @default.
- W3201220588 startingPage "125" @default.
- W3201220588 abstract "Query optimization for big data architectures like MapReduce, Spark, and Druid is challenging due to the numerosity of the algorithmic issues to be addressed. Conventional algorithmic design issues like memory, CPU time, IO cost should be analyzed in the context of additional parameters such as communication cost. The issue of data resident skew further complicates the analysis. This chapter studies the communication cost reduction strategies for conventional workloads such as joins, spatial queries, and graph queries. We review the algorithms for multi-way join using MapReduce. Multi-way θ-join algorithms address the multi-way join with inequality conditions. As θ-join output is much higher compared to the output of equi join, multi-way θ-join further poses difficulties for the analysis. An analysis of multi-way θ-join is presented on the basis of sizes of input sets, output sets as well as the communication cost. Data resident skew plays a key role in all the scenarios discussed. Addressing the skew in a general sense is discussed. Partitioning strategies that minimize the impact of skew on the skew in loads of computing nodes are also further presented. Application of join strategies for the spatial data has dragged the interest of researchers, and distribution of spatial join requires special emphasis for dealing with the spatial nature of the dataset. A controlled replicate strategy is reviewed to solve the problem of multi-way spatial join. Graph-based analytical queries such as triangle counting and subgraph enumeration in the context of distributed processing are presented. Being a primitive needed for many graph queries, triangle counting has been analyzed from the perspective of skew it brings using an elegant distribution scheme. Subgraph enumeration problem is also presented using various partitioning schemes and a brief analysis of their performance." @default.
- W3201220588 created "2021-09-27" @default.
- W3201220588 creator A5003053340 @default.
- W3201220588 creator A5034195219 @default.
- W3201220588 creator A5063080448 @default.
- W3201220588 date "2021-07-07" @default.
- W3201220588 modified "2023-09-23" @default.
- W3201220588 title "Query optimization strategies for big data" @default.
- W3201220588 doi "https://doi.org/10.1049/pbpc037f_ch4" @default.
- W3201220588 hasPublicationYear "2021" @default.
- W3201220588 type Work @default.
- W3201220588 sameAs 3201220588 @default.
- W3201220588 citedByCount "0" @default.
- W3201220588 crossrefType "book-chapter" @default.
- W3201220588 hasAuthorship W3201220588A5003053340 @default.
- W3201220588 hasAuthorship W3201220588A5034195219 @default.
- W3201220588 hasAuthorship W3201220588A5063080448 @default.
- W3201220588 hasConcept C114614502 @default.
- W3201220588 hasConcept C124101348 @default.
- W3201220588 hasConcept C132525143 @default.
- W3201220588 hasConcept C151730666 @default.
- W3201220588 hasConcept C199360897 @default.
- W3201220588 hasConcept C2776124973 @default.
- W3201220588 hasConcept C2778692605 @default.
- W3201220588 hasConcept C2779343474 @default.
- W3201220588 hasConcept C2781215313 @default.
- W3201220588 hasConcept C33923547 @default.
- W3201220588 hasConcept C41008148 @default.
- W3201220588 hasConcept C43711488 @default.
- W3201220588 hasConcept C75684735 @default.
- W3201220588 hasConcept C76155785 @default.
- W3201220588 hasConcept C80444323 @default.
- W3201220588 hasConcept C86803240 @default.
- W3201220588 hasConceptScore W3201220588C114614502 @default.
- W3201220588 hasConceptScore W3201220588C124101348 @default.
- W3201220588 hasConceptScore W3201220588C132525143 @default.
- W3201220588 hasConceptScore W3201220588C151730666 @default.
- W3201220588 hasConceptScore W3201220588C199360897 @default.
- W3201220588 hasConceptScore W3201220588C2776124973 @default.
- W3201220588 hasConceptScore W3201220588C2778692605 @default.
- W3201220588 hasConceptScore W3201220588C2779343474 @default.
- W3201220588 hasConceptScore W3201220588C2781215313 @default.
- W3201220588 hasConceptScore W3201220588C33923547 @default.
- W3201220588 hasConceptScore W3201220588C41008148 @default.
- W3201220588 hasConceptScore W3201220588C43711488 @default.
- W3201220588 hasConceptScore W3201220588C75684735 @default.
- W3201220588 hasConceptScore W3201220588C76155785 @default.
- W3201220588 hasConceptScore W3201220588C80444323 @default.
- W3201220588 hasConceptScore W3201220588C86803240 @default.
- W3201220588 hasLocation W32012205881 @default.
- W3201220588 hasOpenAccess W3201220588 @default.
- W3201220588 hasPrimaryLocation W32012205881 @default.
- W3201220588 hasRelatedWork W11282104 @default.
- W3201220588 hasRelatedWork W12527996 @default.
- W3201220588 hasRelatedWork W14046218 @default.
- W3201220588 hasRelatedWork W14047543 @default.
- W3201220588 hasRelatedWork W14135646 @default.
- W3201220588 hasRelatedWork W1508438 @default.
- W3201220588 hasRelatedWork W1619398 @default.
- W3201220588 hasRelatedWork W1676423 @default.
- W3201220588 hasRelatedWork W5211984 @default.
- W3201220588 hasRelatedWork W6307799 @default.
- W3201220588 isParatext "false" @default.
- W3201220588 isRetracted "false" @default.
- W3201220588 magId "3201220588" @default.
- W3201220588 workType "book-chapter" @default.