Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201220741> ?p ?o ?g. }
- W3201220741 endingPage "2873" @default.
- W3201220741 startingPage "2862" @default.
- W3201220741 abstract "Motivated by the problem of optimization of force-field systems in physics using large-scale computer simulations, we consider exploration of a deterministic complex multivariate response surface. The objective is to find input combinations that generate output close to some desired or “target” vector. Despite reducing the problem to exploration of the input space with respect to a 1-D loss function, the search is nontrivial and challenging due to infeasible input combinations, high dimensionalities of the input and output space and multiple “desirable” regions in the input space, and the difficulty of emulating the objective function well with a surrogate model. We propose an approach that is based on combining machine learning techniques with smart experimental design ideas to locate multiple good regions in the input space. Note to Practitioners—ReaxFF is a force field that incorporates complex functions with associated inputs in order to describe the inter- and intra-atomic interactions in materials systems. A typical ReaxFF force field consists of hundreds of parameters (inputs) per element type. During the development of a force field for a molecular system of interest, using computer simulations, these parameters are optimized to reproduce hundreds of material properties close to some benchmark reference values. Finding “good” combinations of hundreds of parameters that produce hundreds of reference values close to their gold standards is a challenging problem because there may be several parameter combinations that may be “almost equally good” or “equally desirable.” To add to the complication, several input combinations simply lead to a system crash, not producing any output at all. Standard global optimization methods do not address such a problem. We propose a novel framework that can address this problem. Beyond the ReaxFF optimization, it can be applied to multiobjective optimization in engineering and the physical sciences, where there are unknown constraints and the focus is on obtaining several good points that can serve as alternatives to a single global optimum." @default.
- W3201220741 created "2021-09-27" @default.
- W3201220741 creator A5029852186 @default.
- W3201220741 creator A5044081820 @default.
- W3201220741 creator A5057386868 @default.
- W3201220741 creator A5063163553 @default.
- W3201220741 creator A5077401838 @default.
- W3201220741 creator A5089814620 @default.
- W3201220741 date "2022-10-01" @default.
- W3201220741 modified "2023-10-16" @default.
- W3201220741 title "CLAIMED: A CLAssification-Incorporated Minimum Energy Design to Explore a Multivariate Response Surface With Feasibility Constraints" @default.
- W3201220741 cites W1502953769 @default.
- W3201220741 cites W1510052597 @default.
- W3201220741 cites W1986383855 @default.
- W3201220741 cites W1994352665 @default.
- W3201220741 cites W2030677000 @default.
- W3201220741 cites W2035750205 @default.
- W3201220741 cites W2073987885 @default.
- W3201220741 cites W2089795479 @default.
- W3201220741 cites W2094007662 @default.
- W3201220741 cites W2122561103 @default.
- W3201220741 cites W2135046866 @default.
- W3201220741 cites W2143185749 @default.
- W3201220741 cites W2151238122 @default.
- W3201220741 cites W2152551290 @default.
- W3201220741 cites W2170653593 @default.
- W3201220741 cites W2293401948 @default.
- W3201220741 cites W2606763239 @default.
- W3201220741 cites W2778059626 @default.
- W3201220741 cites W2911964244 @default.
- W3201220741 cites W2919115771 @default.
- W3201220741 cites W2949071206 @default.
- W3201220741 cites W2955908957 @default.
- W3201220741 cites W2981571211 @default.
- W3201220741 cites W3160882179 @default.
- W3201220741 cites W4243645092 @default.
- W3201220741 doi "https://doi.org/10.1109/tase.2021.3094500" @default.
- W3201220741 hasPublicationYear "2022" @default.
- W3201220741 type Work @default.
- W3201220741 sameAs 3201220741 @default.
- W3201220741 citedByCount "0" @default.
- W3201220741 crossrefType "journal-article" @default.
- W3201220741 hasAuthorship W3201220741A5029852186 @default.
- W3201220741 hasAuthorship W3201220741A5044081820 @default.
- W3201220741 hasAuthorship W3201220741A5057386868 @default.
- W3201220741 hasAuthorship W3201220741A5063163553 @default.
- W3201220741 hasAuthorship W3201220741A5077401838 @default.
- W3201220741 hasAuthorship W3201220741A5089814620 @default.
- W3201220741 hasBestOaLocation W32012207412 @default.
- W3201220741 hasConcept C105795698 @default.
- W3201220741 hasConcept C10803110 @default.
- W3201220741 hasConcept C11413529 @default.
- W3201220741 hasConcept C119857082 @default.
- W3201220741 hasConcept C121332964 @default.
- W3201220741 hasConcept C126255220 @default.
- W3201220741 hasConcept C13280743 @default.
- W3201220741 hasConcept C14036430 @default.
- W3201220741 hasConcept C154945302 @default.
- W3201220741 hasConcept C161584116 @default.
- W3201220741 hasConcept C185798385 @default.
- W3201220741 hasConcept C202444582 @default.
- W3201220741 hasConcept C205649164 @default.
- W3201220741 hasConcept C2776372370 @default.
- W3201220741 hasConcept C2776653683 @default.
- W3201220741 hasConcept C33923547 @default.
- W3201220741 hasConcept C41008148 @default.
- W3201220741 hasConcept C59593255 @default.
- W3201220741 hasConcept C62520636 @default.
- W3201220741 hasConcept C73586568 @default.
- W3201220741 hasConcept C78458016 @default.
- W3201220741 hasConcept C86803240 @default.
- W3201220741 hasConcept C9652623 @default.
- W3201220741 hasConceptScore W3201220741C105795698 @default.
- W3201220741 hasConceptScore W3201220741C10803110 @default.
- W3201220741 hasConceptScore W3201220741C11413529 @default.
- W3201220741 hasConceptScore W3201220741C119857082 @default.
- W3201220741 hasConceptScore W3201220741C121332964 @default.
- W3201220741 hasConceptScore W3201220741C126255220 @default.
- W3201220741 hasConceptScore W3201220741C13280743 @default.
- W3201220741 hasConceptScore W3201220741C14036430 @default.
- W3201220741 hasConceptScore W3201220741C154945302 @default.
- W3201220741 hasConceptScore W3201220741C161584116 @default.
- W3201220741 hasConceptScore W3201220741C185798385 @default.
- W3201220741 hasConceptScore W3201220741C202444582 @default.
- W3201220741 hasConceptScore W3201220741C205649164 @default.
- W3201220741 hasConceptScore W3201220741C2776372370 @default.
- W3201220741 hasConceptScore W3201220741C2776653683 @default.
- W3201220741 hasConceptScore W3201220741C33923547 @default.
- W3201220741 hasConceptScore W3201220741C41008148 @default.
- W3201220741 hasConceptScore W3201220741C59593255 @default.
- W3201220741 hasConceptScore W3201220741C62520636 @default.
- W3201220741 hasConceptScore W3201220741C73586568 @default.
- W3201220741 hasConceptScore W3201220741C78458016 @default.
- W3201220741 hasConceptScore W3201220741C86803240 @default.
- W3201220741 hasConceptScore W3201220741C9652623 @default.
- W3201220741 hasFunder F4320337367 @default.
- W3201220741 hasIssue "4" @default.
- W3201220741 hasLocation W32012207411 @default.