Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201223003> ?p ?o ?g. }
- W3201223003 abstract "Floral resources are a key driver of pollinator abundance and diversity, yet their quantification in the field and laboratory is laborious and requires specialist skills. Using a dataset of 25,000 labelled tags of fieldwork-realistic quality, a convolutional neural network (Faster R-CNN) was trained to detect the nectar-producing floral units of 25 taxa in surveyors’ quadrat images of native, weed-rich grassland in the United Kingdom. Floral unit detection on a test set of 50 model-unseen images of comparable vegetation returned a precision of 90%, recall of 86% and F1 score (the harmonic mean of precision and recall) of 88%. Model performance was consistent across the range of floral abundance in this habitat. Comparison of the nectar sugar mass estimates made by the CNN and three human surveyors returned similar means and standard deviations. Over half of the nectar sugar mass estimates made by the model fell within the absolute range of those of the human surveyors. The optimal number of quadrat image samples was determined to be the same for the CNN as for the average human surveyor. For a standard quadrat sampling protocol of 10–15 replicates, this application of deep learning could cut pollinator-plant survey time per stand of vegetation from hours to minutes. The CNN is restricted to a single view of a quadrat, with no scope for manual examination or specimen collection, though in contrast to human surveyors its object detection is deterministic and its floral unit definition is standardized. As agri-environment schemes move from prescriptive to results-based, this approach provides an independent barometer of grassland management which is usable by both landowner and scheme administrator. The model can be adapted to visual estimations of other ecological resources such as winter bird food, floral pollen volume, insect infestation and tree flowering/fruiting, and by adjustment of classification threshold may show acceptable taxonomic differentiation for presence–absence surveys." @default.
- W3201223003 created "2021-09-27" @default.
- W3201223003 creator A5021021405 @default.
- W3201223003 creator A5040304792 @default.
- W3201223003 creator A5040920592 @default.
- W3201223003 creator A5062248947 @default.
- W3201223003 creator A5073703617 @default.
- W3201223003 date "2021-07-01" @default.
- W3201223003 modified "2023-09-25" @default.
- W3201223003 title "Deep learning object detection to estimate the nectar sugar mass of flowering vegetation" @default.
- W3201223003 cites W1535132350 @default.
- W3201223003 cites W1536680647 @default.
- W3201223003 cites W1982025193 @default.
- W3201223003 cites W2083772340 @default.
- W3201223003 cites W2099001231 @default.
- W3201223003 cites W2102605133 @default.
- W3201223003 cites W2165698076 @default.
- W3201223003 cites W2194775991 @default.
- W3201223003 cites W2271221047 @default.
- W3201223003 cites W2464881409 @default.
- W3201223003 cites W2769210209 @default.
- W3201223003 cites W2788812576 @default.
- W3201223003 cites W2810730996 @default.
- W3201223003 cites W2891182582 @default.
- W3201223003 cites W2904589194 @default.
- W3201223003 cites W2905049480 @default.
- W3201223003 cites W2919115771 @default.
- W3201223003 cites W2919681993 @default.
- W3201223003 cites W2921243212 @default.
- W3201223003 cites W2952113774 @default.
- W3201223003 cites W2963037989 @default.
- W3201223003 cites W2963556638 @default.
- W3201223003 cites W2982589596 @default.
- W3201223003 cites W2997127923 @default.
- W3201223003 cites W2997849610 @default.
- W3201223003 cites W3033387047 @default.
- W3201223003 cites W3038699438 @default.
- W3201223003 cites W3042635880 @default.
- W3201223003 cites W3092435162 @default.
- W3201223003 cites W3099878876 @default.
- W3201223003 cites W3117955276 @default.
- W3201223003 cites W3121566389 @default.
- W3201223003 cites W3131387218 @default.
- W3201223003 cites W3201223003 @default.
- W3201223003 doi "https://doi.org/10.1002/2688-8319.12099" @default.
- W3201223003 hasPublicationYear "2021" @default.
- W3201223003 type Work @default.
- W3201223003 sameAs 3201223003 @default.
- W3201223003 citedByCount "4" @default.
- W3201223003 countsByYear W32012230032021 @default.
- W3201223003 countsByYear W32012230032022 @default.
- W3201223003 countsByYear W32012230032023 @default.
- W3201223003 crossrefType "journal-article" @default.
- W3201223003 hasAuthorship W3201223003A5021021405 @default.
- W3201223003 hasAuthorship W3201223003A5040304792 @default.
- W3201223003 hasAuthorship W3201223003A5040920592 @default.
- W3201223003 hasAuthorship W3201223003A5062248947 @default.
- W3201223003 hasAuthorship W3201223003A5073703617 @default.
- W3201223003 hasBestOaLocation W32012230031 @default.
- W3201223003 hasConcept C105795698 @default.
- W3201223003 hasConcept C106131492 @default.
- W3201223003 hasConcept C107394435 @default.
- W3201223003 hasConcept C127413603 @default.
- W3201223003 hasConcept C137793583 @default.
- W3201223003 hasConcept C140779682 @default.
- W3201223003 hasConcept C142724271 @default.
- W3201223003 hasConcept C146978453 @default.
- W3201223003 hasConcept C154945302 @default.
- W3201223003 hasConcept C18903297 @default.
- W3201223003 hasConcept C204323151 @default.
- W3201223003 hasConcept C205649164 @default.
- W3201223003 hasConcept C2776133958 @default.
- W3201223003 hasConcept C2778091200 @default.
- W3201223003 hasConcept C2780618852 @default.
- W3201223003 hasConcept C31972630 @default.
- W3201223003 hasConcept C33923547 @default.
- W3201223003 hasConcept C41008148 @default.
- W3201223003 hasConcept C71924100 @default.
- W3201223003 hasConcept C86803240 @default.
- W3201223003 hasConceptScore W3201223003C105795698 @default.
- W3201223003 hasConceptScore W3201223003C106131492 @default.
- W3201223003 hasConceptScore W3201223003C107394435 @default.
- W3201223003 hasConceptScore W3201223003C127413603 @default.
- W3201223003 hasConceptScore W3201223003C137793583 @default.
- W3201223003 hasConceptScore W3201223003C140779682 @default.
- W3201223003 hasConceptScore W3201223003C142724271 @default.
- W3201223003 hasConceptScore W3201223003C146978453 @default.
- W3201223003 hasConceptScore W3201223003C154945302 @default.
- W3201223003 hasConceptScore W3201223003C18903297 @default.
- W3201223003 hasConceptScore W3201223003C204323151 @default.
- W3201223003 hasConceptScore W3201223003C205649164 @default.
- W3201223003 hasConceptScore W3201223003C2776133958 @default.
- W3201223003 hasConceptScore W3201223003C2778091200 @default.
- W3201223003 hasConceptScore W3201223003C2780618852 @default.
- W3201223003 hasConceptScore W3201223003C31972630 @default.
- W3201223003 hasConceptScore W3201223003C33923547 @default.
- W3201223003 hasConceptScore W3201223003C41008148 @default.
- W3201223003 hasConceptScore W3201223003C71924100 @default.
- W3201223003 hasConceptScore W3201223003C86803240 @default.
- W3201223003 hasFunder F4320318746 @default.