Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201230481> ?p ?o ?g. }
- W3201230481 endingPage "8654" @default.
- W3201230481 startingPage "8632" @default.
- W3201230481 abstract "We have measured the dynamics of completely monodisperse (PDI = 1.0) ultrahigh-molecular-weight linear lambda (λ) DNA solutions as a function of concentration. Due to the very high molecular weight of the DNA, Mn = Mw > 30 million g/mol, we were able to study the dynamic properties of well-entangled systems even in very dilute (low-concentration) conditions. We report the linear rheology by conducting dynamic oscillatory measurements well into the entanglement regime (11 < C* < 90), where C* is the overlap concentration. The tests are reported in good solvent conditions. Upon comparing our results with previously reported data in the literature by Teixeira et al. [ Macromolecules 2007, 40 (7), 2461−2476] and reproducing their data, we can confirm their measurements to have been conducted in the nonlinear regime. This leads to the conclusion that the lambda DNA exhibits extreme strain sensitivity in the observed dynamics, and this induces the earlier onset of nonlinearity as the angular frequency decreases. The time–concentration superposition (TCS) was found to be valid in the terminal zone, which permitted the evaluation of ∼9 decades of dynamics in the mastercurve. The concentration dependence of the time–concentration shift factors (vertical and horizontal) was found to be in good agreement with the plateau moduli and the crossover frequency scaling. A concentration dependence of plateau modulus GN0 ∼ C2.29 is obtained from the dynamic tests. The plateau modulus scaling is consistent with the blob model for entangled polymer solutions. The terminal relaxation time shows a change like the unentangled-to-entangled crossover in synthetic polymer solutions from τd ∼ C1.1 and τd ∼ C3.53 at around 1 mg/mL (24C*). A very high concentration dependence of the zero-shear viscosity, η0 ∼ C5.5, is estimated for the high-concentration samples. We interpret the concentration-dependent scaling to be in an entangled regime observed only in very high molecular weight solutions at sufficiently high concentrations. A Likhtman–McLeish model was used to fit the LVE with the constraint release parameter, cν, fixed at 1 and 10. The Likhtman–McLeish model does not seem to capture all of the physical processes in the dynamics, and a good fit was not obtained, particularly for the higher-concentration samples though the fit quality improved with the greater constraint release parameter magnitude. Entanglement density predicted by the Likhtman–McLeish model scaled linearly with the entanglement density calculated by the blob model for solutions. The entangled dynamics is possibly nonreptative as reptation or its derivative models do not predict the observed strong nonlinearity and the high susceptibility of the system to strain." @default.
- W3201230481 created "2021-09-27" @default.
- W3201230481 creator A5021602722 @default.
- W3201230481 creator A5029357350 @default.
- W3201230481 creator A5033286801 @default.
- W3201230481 creator A5082965591 @default.
- W3201230481 date "2021-09-09" @default.
- W3201230481 modified "2023-10-01" @default.
- W3201230481 title "Monodisperse Lambda DNA as a Model to Conventional Polymers: A Concentration-Dependent Scaling of the Rheological Properties" @default.
- W3201230481 cites W12296087 @default.
- W3201230481 cites W1965034296 @default.
- W3201230481 cites W1970923549 @default.
- W3201230481 cites W1974471630 @default.
- W3201230481 cites W1975759496 @default.
- W3201230481 cites W1978660506 @default.
- W3201230481 cites W1980974294 @default.
- W3201230481 cites W1985204201 @default.
- W3201230481 cites W1985810719 @default.
- W3201230481 cites W1990066342 @default.
- W3201230481 cites W1990217589 @default.
- W3201230481 cites W1993758547 @default.
- W3201230481 cites W1994051403 @default.
- W3201230481 cites W1994639424 @default.
- W3201230481 cites W1997153010 @default.
- W3201230481 cites W2001274293 @default.
- W3201230481 cites W2002061266 @default.
- W3201230481 cites W2003992827 @default.
- W3201230481 cites W2004890927 @default.
- W3201230481 cites W2018543530 @default.
- W3201230481 cites W2022244315 @default.
- W3201230481 cites W2024316435 @default.
- W3201230481 cites W2027406566 @default.
- W3201230481 cites W2032346723 @default.
- W3201230481 cites W2035527148 @default.
- W3201230481 cites W2036475903 @default.
- W3201230481 cites W2040715635 @default.
- W3201230481 cites W2043460456 @default.
- W3201230481 cites W2045047211 @default.
- W3201230481 cites W2047188754 @default.
- W3201230481 cites W2049094439 @default.
- W3201230481 cites W2049996038 @default.
- W3201230481 cites W2051753857 @default.
- W3201230481 cites W2053665323 @default.
- W3201230481 cites W2056630081 @default.
- W3201230481 cites W2056981892 @default.
- W3201230481 cites W2061301780 @default.
- W3201230481 cites W2070154589 @default.
- W3201230481 cites W2073511417 @default.
- W3201230481 cites W2076167160 @default.
- W3201230481 cites W2079730334 @default.
- W3201230481 cites W2079794597 @default.
- W3201230481 cites W2080588893 @default.
- W3201230481 cites W2080635962 @default.
- W3201230481 cites W2081410648 @default.
- W3201230481 cites W2088957752 @default.
- W3201230481 cites W2090238499 @default.
- W3201230481 cites W2097293881 @default.
- W3201230481 cites W2100005635 @default.
- W3201230481 cites W2115407883 @default.
- W3201230481 cites W2115520212 @default.
- W3201230481 cites W2115908947 @default.
- W3201230481 cites W2124206695 @default.
- W3201230481 cites W2129134773 @default.
- W3201230481 cites W2138142308 @default.
- W3201230481 cites W2152839547 @default.
- W3201230481 cites W2168019444 @default.
- W3201230481 cites W2174021414 @default.
- W3201230481 cites W2260007748 @default.
- W3201230481 cites W2332052017 @default.
- W3201230481 cites W2343827604 @default.
- W3201230481 cites W2772867596 @default.
- W3201230481 cites W2804750250 @default.
- W3201230481 cites W2904351423 @default.
- W3201230481 cites W2912069998 @default.
- W3201230481 cites W2952174659 @default.
- W3201230481 cites W3015820674 @default.
- W3201230481 cites W3105998938 @default.
- W3201230481 cites W4241562689 @default.
- W3201230481 doi "https://doi.org/10.1021/acs.macromol.0c02537" @default.
- W3201230481 hasPublicationYear "2021" @default.
- W3201230481 type Work @default.
- W3201230481 sameAs 3201230481 @default.
- W3201230481 citedByCount "11" @default.
- W3201230481 countsByYear W32012304812021 @default.
- W3201230481 countsByYear W32012304812022 @default.
- W3201230481 countsByYear W32012304812023 @default.
- W3201230481 crossrefType "journal-article" @default.
- W3201230481 hasAuthorship W3201230481A5021602722 @default.
- W3201230481 hasAuthorship W3201230481A5029357350 @default.
- W3201230481 hasAuthorship W3201230481A5033286801 @default.
- W3201230481 hasAuthorship W3201230481A5082965591 @default.
- W3201230481 hasConcept C11432220 @default.
- W3201230481 hasConcept C120665830 @default.
- W3201230481 hasConcept C121040770 @default.
- W3201230481 hasConcept C121332964 @default.
- W3201230481 hasConcept C127172972 @default.
- W3201230481 hasConcept C134306372 @default.
- W3201230481 hasConcept C147597530 @default.