Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201230992> ?p ?o ?g. }
- W3201230992 endingPage "989" @default.
- W3201230992 startingPage "989" @default.
- W3201230992 abstract "Data driven methods are widely used for the development of Landslide Susceptibility Mapping (LSM). The results of these methods are sensitive to different factors, such as the quality of input data, choice of algorithm, sampling strategies, and data splitting ratios. In this study, five different Machine Learning (ML) algorithms are used for LSM for the Wayanad district in Kerala, India, using two different sampling strategies and nine different train to test ratios in cross validation. The results show that Random Forest (RF), K Nearest Neighbors (KNN), and Support Vector Machine (SVM) algorithms provide better results than Naïve Bayes (NB) and Logistic Regression (LR) for the study area. NB and LR algorithms are less sensitive to the sampling strategy and data splitting, while the performance of the other three algorithms is considerably influenced by the sampling strategy. From the results, both the choice of algorithm and sampling strategy are critical in obtaining the best suited landslide susceptibility map for a region. The accuracies of KNN, RF, and SVM algorithms have increased by 10.51%, 10.02%, and 4.98% with the use of polygon landslide inventory data, while for NB and LR algorithms, the performance was slightly reduced with the use of polygon data. Thus, the sampling strategy and data splitting ratio are less consequential with NB and algorithms, while more data points provide better results for KNN, RF, and SVM algorithms." @default.
- W3201230992 created "2021-09-27" @default.
- W3201230992 creator A5003088470 @default.
- W3201230992 creator A5029739578 @default.
- W3201230992 creator A5054592842 @default.
- W3201230992 creator A5055454046 @default.
- W3201230992 creator A5059040421 @default.
- W3201230992 date "2021-09-19" @default.
- W3201230992 modified "2023-10-11" @default.
- W3201230992 title "Factors Affecting Landslide Susceptibility Mapping: Assessing the Influence of Different Machine Learning Approaches, Sampling Strategies and Data Splitting" @default.
- W3201230992 cites W2000380895 @default.
- W3201230992 cites W2026491724 @default.
- W3201230992 cites W2026492654 @default.
- W3201230992 cites W2058018051 @default.
- W3201230992 cites W2082507487 @default.
- W3201230992 cites W2084439358 @default.
- W3201230992 cites W2146193817 @default.
- W3201230992 cites W2158143121 @default.
- W3201230992 cites W2792546905 @default.
- W3201230992 cites W2793831793 @default.
- W3201230992 cites W2896947203 @default.
- W3201230992 cites W2911424673 @default.
- W3201230992 cites W2920913584 @default.
- W3201230992 cites W2951913574 @default.
- W3201230992 cites W2971060441 @default.
- W3201230992 cites W2979806575 @default.
- W3201230992 cites W3004931647 @default.
- W3201230992 cites W3006583570 @default.
- W3201230992 cites W3014313938 @default.
- W3201230992 cites W3032913569 @default.
- W3201230992 cites W3081930112 @default.
- W3201230992 cites W3082659354 @default.
- W3201230992 cites W3088520305 @default.
- W3201230992 cites W3106670450 @default.
- W3201230992 cites W3107040622 @default.
- W3201230992 cites W3117712630 @default.
- W3201230992 cites W3125955393 @default.
- W3201230992 cites W3152092910 @default.
- W3201230992 cites W3152170428 @default.
- W3201230992 cites W3155736070 @default.
- W3201230992 cites W3157249746 @default.
- W3201230992 cites W3164592829 @default.
- W3201230992 cites W4239510810 @default.
- W3201230992 doi "https://doi.org/10.3390/land10090989" @default.
- W3201230992 hasPublicationYear "2021" @default.
- W3201230992 type Work @default.
- W3201230992 sameAs 3201230992 @default.
- W3201230992 citedByCount "23" @default.
- W3201230992 countsByYear W32012309922022 @default.
- W3201230992 countsByYear W32012309922023 @default.
- W3201230992 crossrefType "journal-article" @default.
- W3201230992 hasAuthorship W3201230992A5003088470 @default.
- W3201230992 hasAuthorship W3201230992A5029739578 @default.
- W3201230992 hasAuthorship W3201230992A5054592842 @default.
- W3201230992 hasAuthorship W3201230992A5055454046 @default.
- W3201230992 hasAuthorship W3201230992A5059040421 @default.
- W3201230992 hasBestOaLocation W32012309921 @default.
- W3201230992 hasConcept C11413529 @default.
- W3201230992 hasConcept C119857082 @default.
- W3201230992 hasConcept C12267149 @default.
- W3201230992 hasConcept C124101348 @default.
- W3201230992 hasConcept C126042441 @default.
- W3201230992 hasConcept C127413603 @default.
- W3201230992 hasConcept C140779682 @default.
- W3201230992 hasConcept C151956035 @default.
- W3201230992 hasConcept C154945302 @default.
- W3201230992 hasConcept C169258074 @default.
- W3201230992 hasConcept C186295008 @default.
- W3201230992 hasConcept C187320778 @default.
- W3201230992 hasConcept C190694206 @default.
- W3201230992 hasConcept C41008148 @default.
- W3201230992 hasConcept C52001869 @default.
- W3201230992 hasConcept C76155785 @default.
- W3201230992 hasConcept C94915269 @default.
- W3201230992 hasConceptScore W3201230992C11413529 @default.
- W3201230992 hasConceptScore W3201230992C119857082 @default.
- W3201230992 hasConceptScore W3201230992C12267149 @default.
- W3201230992 hasConceptScore W3201230992C124101348 @default.
- W3201230992 hasConceptScore W3201230992C126042441 @default.
- W3201230992 hasConceptScore W3201230992C127413603 @default.
- W3201230992 hasConceptScore W3201230992C140779682 @default.
- W3201230992 hasConceptScore W3201230992C151956035 @default.
- W3201230992 hasConceptScore W3201230992C154945302 @default.
- W3201230992 hasConceptScore W3201230992C169258074 @default.
- W3201230992 hasConceptScore W3201230992C186295008 @default.
- W3201230992 hasConceptScore W3201230992C187320778 @default.
- W3201230992 hasConceptScore W3201230992C190694206 @default.
- W3201230992 hasConceptScore W3201230992C41008148 @default.
- W3201230992 hasConceptScore W3201230992C52001869 @default.
- W3201230992 hasConceptScore W3201230992C76155785 @default.
- W3201230992 hasConceptScore W3201230992C94915269 @default.
- W3201230992 hasFunder F4320320967 @default.
- W3201230992 hasFunder F4320321145 @default.
- W3201230992 hasIssue "9" @default.
- W3201230992 hasLocation W32012309921 @default.
- W3201230992 hasOpenAccess W3201230992 @default.
- W3201230992 hasPrimaryLocation W32012309921 @default.
- W3201230992 hasRelatedWork W2979979539 @default.