Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201239432> ?p ?o ?g. }
- W3201239432 endingPage "1435" @default.
- W3201239432 startingPage "1421" @default.
- W3201239432 abstract "The high-precision QoS (quality of service) prediction is based on the comprehensive perception of state information of users and services. However, the current QoS prediction approaches have limited accuracy, for most state information of users and services (i.e., network speed, latency, network type, and more) are hidden due to privacy protection. Therefore, this article proposes a hidden-state-aware network (HSA-Net) that includes three steps called hidden state initialization, hidden state perception, and QoS prediction. A hidden state initialization approach is developed first based on the latent dirichlet allocation (LDA). After that, a hidden-state perception approach is proposed to abstract the initialized hidden state by fusing the known information (e.g., service ID and user location). The perception approach consists of four hidden-state perception (HSP) modes (i.e., known mode, object mode, hybrid mode and overall mode) implemented to generate explainable and fused features through four adaptive convolutional kernels. Finally, the relationship between the fused features and the QoS is discovered through a fully connected network to complete the high-precision QoS prediction process. The proposed HSA-Net is evaluated on two real-world datasets. According to the results, the HSA-Net's mean absolute error (MAE) index reduced by 3.67% and 28.84%, whereas the root mean squared error (RMSE) index decreased by 3.07% and 7.14% compared with ten baselines on average in the two datasets." @default.
- W3201239432 created "2021-09-27" @default.
- W3201239432 creator A5008199212 @default.
- W3201239432 creator A5010251502 @default.
- W3201239432 creator A5037487659 @default.
- W3201239432 creator A5070783668 @default.
- W3201239432 creator A5089740855 @default.
- W3201239432 date "2022-06-01" @default.
- W3201239432 modified "2023-10-04" @default.
- W3201239432 title "HSA-Net: Hidden-State-Aware Networks for High-Precision QoS Prediction" @default.
- W3201239432 cites W1515209501 @default.
- W3201239432 cites W1529703297 @default.
- W3201239432 cites W1720514416 @default.
- W3201239432 cites W1988507529 @default.
- W3201239432 cites W2008886893 @default.
- W3201239432 cites W2026749761 @default.
- W3201239432 cites W2042281163 @default.
- W3201239432 cites W2054141820 @default.
- W3201239432 cites W2056398894 @default.
- W3201239432 cites W2091381870 @default.
- W3201239432 cites W2092513324 @default.
- W3201239432 cites W2096762662 @default.
- W3201239432 cites W2123476762 @default.
- W3201239432 cites W2146356176 @default.
- W3201239432 cites W2156227868 @default.
- W3201239432 cites W2162983389 @default.
- W3201239432 cites W2278138779 @default.
- W3201239432 cites W2294256350 @default.
- W3201239432 cites W2323283582 @default.
- W3201239432 cites W2515144511 @default.
- W3201239432 cites W2522691827 @default.
- W3201239432 cites W2524052287 @default.
- W3201239432 cites W2605350416 @default.
- W3201239432 cites W2606637053 @default.
- W3201239432 cites W2611027303 @default.
- W3201239432 cites W2738639449 @default.
- W3201239432 cites W2740920897 @default.
- W3201239432 cites W2743114144 @default.
- W3201239432 cites W2754632892 @default.
- W3201239432 cites W2756435302 @default.
- W3201239432 cites W2761830048 @default.
- W3201239432 cites W2765690456 @default.
- W3201239432 cites W2770088409 @default.
- W3201239432 cites W2789590212 @default.
- W3201239432 cites W2796450692 @default.
- W3201239432 cites W2807511999 @default.
- W3201239432 cites W2808830345 @default.
- W3201239432 cites W2884048157 @default.
- W3201239432 cites W2889596732 @default.
- W3201239432 cites W2890673770 @default.
- W3201239432 cites W2899291427 @default.
- W3201239432 cites W2917746835 @default.
- W3201239432 cites W2928382658 @default.
- W3201239432 cites W2930749509 @default.
- W3201239432 cites W2937241109 @default.
- W3201239432 cites W2966742799 @default.
- W3201239432 cites W2969915818 @default.
- W3201239432 cites W2996967608 @default.
- W3201239432 cites W3003450920 @default.
- W3201239432 cites W3011380968 @default.
- W3201239432 cites W3028305817 @default.
- W3201239432 cites W3040145264 @default.
- W3201239432 cites W3047753861 @default.
- W3201239432 cites W3099197166 @default.
- W3201239432 cites W3108997232 @default.
- W3201239432 cites W3143418053 @default.
- W3201239432 cites W4249267926 @default.
- W3201239432 doi "https://doi.org/10.1109/tpds.2021.3111810" @default.
- W3201239432 hasPublicationYear "2022" @default.
- W3201239432 type Work @default.
- W3201239432 sameAs 3201239432 @default.
- W3201239432 citedByCount "6" @default.
- W3201239432 countsByYear W32012394322022 @default.
- W3201239432 countsByYear W32012394322023 @default.
- W3201239432 crossrefType "journal-article" @default.
- W3201239432 hasAuthorship W3201239432A5008199212 @default.
- W3201239432 hasAuthorship W3201239432A5010251502 @default.
- W3201239432 hasAuthorship W3201239432A5037487659 @default.
- W3201239432 hasAuthorship W3201239432A5070783668 @default.
- W3201239432 hasAuthorship W3201239432A5089740855 @default.
- W3201239432 hasConcept C105795698 @default.
- W3201239432 hasConcept C11413529 @default.
- W3201239432 hasConcept C114466953 @default.
- W3201239432 hasConcept C119857082 @default.
- W3201239432 hasConcept C124101348 @default.
- W3201239432 hasConcept C139945424 @default.
- W3201239432 hasConcept C154945302 @default.
- W3201239432 hasConcept C199360897 @default.
- W3201239432 hasConcept C23224414 @default.
- W3201239432 hasConcept C31258907 @default.
- W3201239432 hasConcept C33923547 @default.
- W3201239432 hasConcept C41008148 @default.
- W3201239432 hasConcept C48103436 @default.
- W3201239432 hasConcept C5119721 @default.
- W3201239432 hasConcept C81363708 @default.
- W3201239432 hasConceptScore W3201239432C105795698 @default.
- W3201239432 hasConceptScore W3201239432C11413529 @default.
- W3201239432 hasConceptScore W3201239432C114466953 @default.