Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201280901> ?p ?o ?g. }
- W3201280901 endingPage "5901" @default.
- W3201280901 startingPage "5901" @default.
- W3201280901 abstract "Engineering, Procurement, and Construction (EPC) projects span the entire cycle of industrial plants, from bidding to engineering, construction, and start-up operation and maintenance. Most EPC contractors do not have systematic decision-making tools when bidding for the project; therefore, they rely on manual analysis and experience in evaluating the bidding contract documents, including technical specifications. Oftentimes, they miss or underestimate the presence of technical risk clauses or risk severity, potentially create with a low bid price and tight construction schedule, and eventually experience severe cost overrun or/and completion delays. Through this study, two digital modules, Technical Risk Extraction and Design Parameter Extraction, were developed to extract and analyze risks in the project’s technical specifications based on machine learning and AI algorithms. In the Technical Risk Extraction module, technical risk keywords in the bidding technical specifications are collected, lexiconized, and then extracted through phrase matcher technology, a machine learning natural language processing technique. The Design Parameter Extraction module compares the collected engineering standards’ so-called standard design parameters and the plant owner’s technical requirements on the bid so that a contractor’s engineers can detect the difference between them and negotiate them. As described above, through the two modules, the risk clauses of the technical specifications of the project are extracted, and the risks are detected and reconsidered in the bidding or execution of the project, thereby minimizing project risk and providing a theoretical foundation and system for contractors. As a result of the pilot test performed to verify the performance and validity of the two modules, the design risk extraction accuracy of the system module has a relative advantage of 50 percent or more, compared to the risk extraction accuracy of manual evaluation by engineers. In addition, the speed of the automatic extraction and analysis of the system modules are 80 times faster than the engineer’s manual analysis time, thereby minimizing project loss due to errors or omissions due to design risk analysis during the project bidding period with a set deadline." @default.
- W3201280901 created "2021-09-27" @default.
- W3201280901 creator A5004656794 @default.
- W3201280901 creator A5055017651 @default.
- W3201280901 creator A5059273559 @default.
- W3201280901 creator A5060015180 @default.
- W3201280901 date "2021-09-17" @default.
- W3201280901 modified "2023-09-27" @default.
- W3201280901 title "A Digitalized Design Risk Analysis Tool with Machine-Learning Algorithm for EPC Contractor’s Technical Specifications Assessment on Bidding" @default.
- W3201280901 cites W1964922421 @default.
- W3201280901 cites W2001212454 @default.
- W3201280901 cites W2017536488 @default.
- W3201280901 cites W2025501506 @default.
- W3201280901 cites W2032957987 @default.
- W3201280901 cites W2065714408 @default.
- W3201280901 cites W2171278097 @default.
- W3201280901 cites W2171861768 @default.
- W3201280901 cites W2203206325 @default.
- W3201280901 cites W2315731050 @default.
- W3201280901 cites W2340197128 @default.
- W3201280901 cites W2408593711 @default.
- W3201280901 cites W2460289272 @default.
- W3201280901 cites W2529396924 @default.
- W3201280901 cites W2553158001 @default.
- W3201280901 cites W2575641950 @default.
- W3201280901 cites W2606855634 @default.
- W3201280901 cites W2689660319 @default.
- W3201280901 cites W2765143640 @default.
- W3201280901 cites W2796816754 @default.
- W3201280901 cites W2805208015 @default.
- W3201280901 cites W2810577474 @default.
- W3201280901 cites W2883007909 @default.
- W3201280901 cites W2884323874 @default.
- W3201280901 cites W2897778959 @default.
- W3201280901 cites W2904845423 @default.
- W3201280901 cites W2909418764 @default.
- W3201280901 cites W2921667249 @default.
- W3201280901 cites W2944345944 @default.
- W3201280901 cites W2946148125 @default.
- W3201280901 cites W2953398913 @default.
- W3201280901 cites W2962221540 @default.
- W3201280901 cites W2967794585 @default.
- W3201280901 cites W2997380284 @default.
- W3201280901 cites W3007064172 @default.
- W3201280901 cites W3010453738 @default.
- W3201280901 cites W3018988229 @default.
- W3201280901 cites W3041218987 @default.
- W3201280901 cites W3042094818 @default.
- W3201280901 cites W3107352220 @default.
- W3201280901 cites W3120558670 @default.
- W3201280901 cites W3189345904 @default.
- W3201280901 cites W3196202912 @default.
- W3201280901 cites W3198943570 @default.
- W3201280901 cites W4233334198 @default.
- W3201280901 cites W888387575 @default.
- W3201280901 cites W2080540953 @default.
- W3201280901 doi "https://doi.org/10.3390/en14185901" @default.
- W3201280901 hasPublicationYear "2021" @default.
- W3201280901 type Work @default.
- W3201280901 sameAs 3201280901 @default.
- W3201280901 citedByCount "6" @default.
- W3201280901 countsByYear W32012809012022 @default.
- W3201280901 countsByYear W32012809012023 @default.
- W3201280901 crossrefType "journal-article" @default.
- W3201280901 hasAuthorship W3201280901A5004656794 @default.
- W3201280901 hasAuthorship W3201280901A5055017651 @default.
- W3201280901 hasAuthorship W3201280901A5059273559 @default.
- W3201280901 hasAuthorship W3201280901A5060015180 @default.
- W3201280901 hasBestOaLocation W32012809011 @default.
- W3201280901 hasConcept C111919701 @default.
- W3201280901 hasConcept C112930515 @default.
- W3201280901 hasConcept C144133560 @default.
- W3201280901 hasConcept C162853370 @default.
- W3201280901 hasConcept C201650216 @default.
- W3201280901 hasConcept C41008148 @default.
- W3201280901 hasConcept C68387754 @default.
- W3201280901 hasConcept C9233905 @default.
- W3201280901 hasConceptScore W3201280901C111919701 @default.
- W3201280901 hasConceptScore W3201280901C112930515 @default.
- W3201280901 hasConceptScore W3201280901C144133560 @default.
- W3201280901 hasConceptScore W3201280901C162853370 @default.
- W3201280901 hasConceptScore W3201280901C201650216 @default.
- W3201280901 hasConceptScore W3201280901C41008148 @default.
- W3201280901 hasConceptScore W3201280901C68387754 @default.
- W3201280901 hasConceptScore W3201280901C9233905 @default.
- W3201280901 hasFunder F4320321681 @default.
- W3201280901 hasIssue "18" @default.
- W3201280901 hasLocation W32012809011 @default.
- W3201280901 hasLocation W32012809012 @default.
- W3201280901 hasOpenAccess W3201280901 @default.
- W3201280901 hasPrimaryLocation W32012809011 @default.
- W3201280901 hasRelatedWork W2353137333 @default.
- W3201280901 hasRelatedWork W2364551623 @default.
- W3201280901 hasRelatedWork W2368635184 @default.
- W3201280901 hasRelatedWork W2369720308 @default.
- W3201280901 hasRelatedWork W2371430819 @default.
- W3201280901 hasRelatedWork W2371881347 @default.
- W3201280901 hasRelatedWork W2380248035 @default.