Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201309103> ?p ?o ?g. }
- W3201309103 endingPage "932" @default.
- W3201309103 startingPage "932" @default.
- W3201309103 abstract "Over recent decades, the world has experienced the adverse consequences of uncontrolled development of multiple human activities. In recent years, the total production of chemicals has been composed of environmentally harmful compounds, the majority of which have significant environmental impacts. These emerging contaminants (ECs) include a wide range of man-made chemicals (such as pesticides, cosmetics, personal and household care products, pharmaceuticals), which are of worldwide use. Among these, several ECs raised concerns regarding their ecotoxicological effects and how to assess them efficiently. This is of particular interest if marine diatoms are considered as potential target species, due to their widespread distribution, being the most abundant phytoplankton group in the oceans, and also being responsible for key ecological roles. Bio-optical ecotoxicity methods appear as reliable, fast, and high-throughput screening (HTS) techniques, providing large datasets with biological relevance on the mode of action of these ECs in phototrophic organisms, such as diatoms. However, from the large datasets produced, only a small amount of data are normally extracted for physiological evaluation, leaving out a large amount of information on the ECs exposure. In the present paper, we use all the available information and evaluate the application of several machine learning and deep learning algorithms to predict the exposure of model organisms to different ECs under different doses, using a model marine diatom (Phaeodactylum tricornutum) as a test organism. The results show that 2D convolutional neural networks are the best method to predict the type of EC to which the cultures were exposed, achieving a median accuracy of 97.65%, while Rocket is the best at predicting which concentration the cultures were subjected to, achieving a median accuracy of 100%." @default.
- W3201309103 created "2021-09-27" @default.
- W3201309103 creator A5000201932 @default.
- W3201309103 creator A5012051840 @default.
- W3201309103 creator A5029928006 @default.
- W3201309103 creator A5032011630 @default.
- W3201309103 creator A5039523287 @default.
- W3201309103 creator A5046433642 @default.
- W3201309103 date "2021-09-18" @default.
- W3201309103 modified "2023-10-06" @default.
- W3201309103 title "Artificial Intelligence Meets Marine Ecotoxicology: Applying Deep Learning to Bio-Optical Data from Marine Diatoms Exposed to Legacy and Emerging Contaminants" @default.
- W3201309103 cites W2012385474 @default.
- W3201309103 cites W2049335909 @default.
- W3201309103 cites W2050386030 @default.
- W3201309103 cites W2333595071 @default.
- W3201309103 cites W2340251169 @default.
- W3201309103 cites W2463786411 @default.
- W3201309103 cites W2583255787 @default.
- W3201309103 cites W2743129458 @default.
- W3201309103 cites W2748846176 @default.
- W3201309103 cites W2883474533 @default.
- W3201309103 cites W2888392044 @default.
- W3201309103 cites W2895101345 @default.
- W3201309103 cites W2911964244 @default.
- W3201309103 cites W3042807565 @default.
- W3201309103 cites W3046578445 @default.
- W3201309103 cites W3048653565 @default.
- W3201309103 cites W3049002433 @default.
- W3201309103 cites W3093661772 @default.
- W3201309103 cites W3094303264 @default.
- W3201309103 cites W3102476541 @default.
- W3201309103 cites W3108818623 @default.
- W3201309103 cites W3111840796 @default.
- W3201309103 cites W3114627999 @default.
- W3201309103 cites W3119125815 @default.
- W3201309103 cites W3133390430 @default.
- W3201309103 doi "https://doi.org/10.3390/biology10090932" @default.
- W3201309103 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8470171" @default.
- W3201309103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34571809" @default.
- W3201309103 hasPublicationYear "2021" @default.
- W3201309103 type Work @default.
- W3201309103 sameAs 3201309103 @default.
- W3201309103 citedByCount "8" @default.
- W3201309103 countsByYear W32013091032021 @default.
- W3201309103 countsByYear W32013091032022 @default.
- W3201309103 countsByYear W32013091032023 @default.
- W3201309103 crossrefType "journal-article" @default.
- W3201309103 hasAuthorship W3201309103A5000201932 @default.
- W3201309103 hasAuthorship W3201309103A5012051840 @default.
- W3201309103 hasAuthorship W3201309103A5029928006 @default.
- W3201309103 hasAuthorship W3201309103A5032011630 @default.
- W3201309103 hasAuthorship W3201309103A5039523287 @default.
- W3201309103 hasAuthorship W3201309103A5046433642 @default.
- W3201309103 hasBestOaLocation W32013091031 @default.
- W3201309103 hasConcept C115346097 @default.
- W3201309103 hasConcept C127413603 @default.
- W3201309103 hasConcept C137858568 @default.
- W3201309103 hasConcept C151730666 @default.
- W3201309103 hasConcept C178790620 @default.
- W3201309103 hasConcept C183696295 @default.
- W3201309103 hasConcept C185592680 @default.
- W3201309103 hasConcept C18903297 @default.
- W3201309103 hasConcept C2778902744 @default.
- W3201309103 hasConcept C2780655307 @default.
- W3201309103 hasConcept C29730261 @default.
- W3201309103 hasConcept C46797941 @default.
- W3201309103 hasConcept C86803240 @default.
- W3201309103 hasConceptScore W3201309103C115346097 @default.
- W3201309103 hasConceptScore W3201309103C127413603 @default.
- W3201309103 hasConceptScore W3201309103C137858568 @default.
- W3201309103 hasConceptScore W3201309103C151730666 @default.
- W3201309103 hasConceptScore W3201309103C178790620 @default.
- W3201309103 hasConceptScore W3201309103C183696295 @default.
- W3201309103 hasConceptScore W3201309103C185592680 @default.
- W3201309103 hasConceptScore W3201309103C18903297 @default.
- W3201309103 hasConceptScore W3201309103C2778902744 @default.
- W3201309103 hasConceptScore W3201309103C2780655307 @default.
- W3201309103 hasConceptScore W3201309103C29730261 @default.
- W3201309103 hasConceptScore W3201309103C46797941 @default.
- W3201309103 hasConceptScore W3201309103C86803240 @default.
- W3201309103 hasFunder F4320330295 @default.
- W3201309103 hasFunder F4320334779 @default.
- W3201309103 hasIssue "9" @default.
- W3201309103 hasLocation W32013091031 @default.
- W3201309103 hasLocation W32013091032 @default.
- W3201309103 hasLocation W32013091033 @default.
- W3201309103 hasOpenAccess W3201309103 @default.
- W3201309103 hasPrimaryLocation W32013091031 @default.
- W3201309103 hasRelatedWork W1977147027 @default.
- W3201309103 hasRelatedWork W2013797892 @default.
- W3201309103 hasRelatedWork W2132226429 @default.
- W3201309103 hasRelatedWork W2352022206 @default.
- W3201309103 hasRelatedWork W2413717169 @default.
- W3201309103 hasRelatedWork W2543818618 @default.
- W3201309103 hasRelatedWork W3140064049 @default.
- W3201309103 hasRelatedWork W3145158804 @default.
- W3201309103 hasRelatedWork W4380991270 @default.
- W3201309103 hasRelatedWork W4386669827 @default.