Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201318612> ?p ?o ?g. }
- W3201318612 endingPage "175628722110448" @default.
- W3201318612 startingPage "175628722110448" @default.
- W3201318612 abstract "Over the years, many clinical and engineering methods have been adapted for testing and screening for the presence of diseases. The most commonly used methods for diagnosis and analysis are computed tomography (CT) and X-ray imaging. Manual interpretation of these images is the current gold standard but can be subject to human error, is tedious, and is time-consuming. To improve efficiency and productivity, incorporating machine learning (ML) and deep learning (DL) algorithms could expedite the process. This article aims to review the role of artificial intelligence (AI) and its contribution to data science as well as various learning algorithms in radiology. We will analyze and explore the potential applications in image interpretation and radiological advances for AI. Furthermore, we will discuss the usage, methodology implemented, future of these concepts in radiology, and their limitations and challenges." @default.
- W3201318612 created "2021-09-27" @default.
- W3201318612 creator A5006513001 @default.
- W3201318612 creator A5008816093 @default.
- W3201318612 creator A5011628304 @default.
- W3201318612 creator A5012444278 @default.
- W3201318612 creator A5021166433 @default.
- W3201318612 creator A5037843365 @default.
- W3201318612 creator A5053054633 @default.
- W3201318612 creator A5057211700 @default.
- W3201318612 creator A5058689287 @default.
- W3201318612 creator A5066540164 @default.
- W3201318612 creator A5088117549 @default.
- W3201318612 creator A5088607583 @default.
- W3201318612 creator A5090164688 @default.
- W3201318612 date "2021-01-01" @default.
- W3201318612 modified "2023-10-18" @default.
- W3201318612 title "Engineering and clinical use of artificial intelligence (AI) with machine learning and data science advancements: radiology leading the way for future" @default.
- W3201318612 cites W1884276902 @default.
- W3201318612 cites W2016000869 @default.
- W3201318612 cites W2027677756 @default.
- W3201318612 cites W2046068349 @default.
- W3201318612 cites W2069816479 @default.
- W3201318612 cites W2076063813 @default.
- W3201318612 cites W2083780116 @default.
- W3201318612 cites W2100253342 @default.
- W3201318612 cites W2101087183 @default.
- W3201318612 cites W2102519580 @default.
- W3201318612 cites W2109541290 @default.
- W3201318612 cites W2111379833 @default.
- W3201318612 cites W2132886902 @default.
- W3201318612 cites W2140672121 @default.
- W3201318612 cites W2146296749 @default.
- W3201318612 cites W2151817208 @default.
- W3201318612 cites W2217077692 @default.
- W3201318612 cites W2235915136 @default.
- W3201318612 cites W2247180799 @default.
- W3201318612 cites W2312790940 @default.
- W3201318612 cites W2338526423 @default.
- W3201318612 cites W2341509179 @default.
- W3201318612 cites W2517065464 @default.
- W3201318612 cites W2561981131 @default.
- W3201318612 cites W2570202822 @default.
- W3201318612 cites W2582555581 @default.
- W3201318612 cites W2584483805 @default.
- W3201318612 cites W2588978745 @default.
- W3201318612 cites W2603403091 @default.
- W3201318612 cites W2612688942 @default.
- W3201318612 cites W2620818159 @default.
- W3201318612 cites W2621028221 @default.
- W3201318612 cites W2759356748 @default.
- W3201318612 cites W2768491633 @default.
- W3201318612 cites W2773413394 @default.
- W3201318612 cites W2785645041 @default.
- W3201318612 cites W2794518994 @default.
- W3201318612 cites W2800002784 @default.
- W3201318612 cites W2810349670 @default.
- W3201318612 cites W2906587342 @default.
- W3201318612 cites W2906598409 @default.
- W3201318612 cites W2912528208 @default.
- W3201318612 cites W2916430851 @default.
- W3201318612 cites W2919356958 @default.
- W3201318612 cites W3020996329 @default.
- W3201318612 doi "https://doi.org/10.1177/17562872211044880" @default.
- W3201318612 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8458681" @default.
- W3201318612 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34567272" @default.
- W3201318612 hasPublicationYear "2021" @default.
- W3201318612 type Work @default.
- W3201318612 sameAs 3201318612 @default.
- W3201318612 citedByCount "5" @default.
- W3201318612 countsByYear W32013186122022 @default.
- W3201318612 countsByYear W32013186122023 @default.
- W3201318612 crossrefType "journal-article" @default.
- W3201318612 hasAuthorship W3201318612A5006513001 @default.
- W3201318612 hasAuthorship W3201318612A5008816093 @default.
- W3201318612 hasAuthorship W3201318612A5011628304 @default.
- W3201318612 hasAuthorship W3201318612A5012444278 @default.
- W3201318612 hasAuthorship W3201318612A5021166433 @default.
- W3201318612 hasAuthorship W3201318612A5037843365 @default.
- W3201318612 hasAuthorship W3201318612A5053054633 @default.
- W3201318612 hasAuthorship W3201318612A5057211700 @default.
- W3201318612 hasAuthorship W3201318612A5058689287 @default.
- W3201318612 hasAuthorship W3201318612A5066540164 @default.
- W3201318612 hasAuthorship W3201318612A5088117549 @default.
- W3201318612 hasAuthorship W3201318612A5088607583 @default.
- W3201318612 hasAuthorship W3201318612A5090164688 @default.
- W3201318612 hasBestOaLocation W32013186121 @default.
- W3201318612 hasConcept C108583219 @default.
- W3201318612 hasConcept C111919701 @default.
- W3201318612 hasConcept C119857082 @default.
- W3201318612 hasConcept C126838900 @default.
- W3201318612 hasConcept C154945302 @default.
- W3201318612 hasConcept C157170001 @default.
- W3201318612 hasConcept C19527891 @default.
- W3201318612 hasConcept C199360897 @default.
- W3201318612 hasConcept C2522767166 @default.
- W3201318612 hasConcept C41008148 @default.
- W3201318612 hasConcept C527412718 @default.