Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201346989> ?p ?o ?g. }
- W3201346989 endingPage "1528" @default.
- W3201346989 startingPage "1509" @default.
- W3201346989 abstract "Networks are ubiquitous in the real world such as social networks and communication networks, and anomaly detection on networks aims at finding nodes whose structural or attributed patterns deviate significantly from the majority of reference nodes. However, most of the traditional anomaly detection methods neglect the relation structure information among data points and therefore cannot effectively generalize to the graph structure data. In this paper, we propose an end-to-end model of Deep Dual Support Vector Data description based Autoencoder (Dual-SVDAE) for anomaly detection on attributed networks, which considers both the structure and attribute for attributed networks. Specifically, Dual-SVDAE consists of a structure autoencoder and an attribute autoencoder to learn the latent representation of the node in the structure space and attribute space, respectively. Then, a dual-hypersphere learning mechanism is imposed on them to learn two hyperspheres of normal nodes from the structure and attribute perspectives, respectively. Moreover, to achieve joint learning between the structure and attribute of the network, we fuse the structure embedding and attribute embedding as the final input of the feature decoder to generate the node attribute. Finally, abnormal nodes can be detected by measuring the distance of nodes to the learned center of each hypersphere in the latent structure space and attribute space, respectively. Extensive experiments on the real-world attributed networks show that Dual-SVDAE consistently outperforms the state-of-the-arts, which demonstrates the effectiveness of the proposed method." @default.
- W3201346989 created "2021-09-27" @default.
- W3201346989 creator A5005638593 @default.
- W3201346989 creator A5044389422 @default.
- W3201346989 creator A5045344252 @default.
- W3201346989 creator A5083355786 @default.
- W3201346989 creator A5091320821 @default.
- W3201346989 date "2021-09-24" @default.
- W3201346989 modified "2023-10-14" @default.
- W3201346989 title "Deep Dual Support Vector Data description for anomaly detection on attributed networks" @default.
- W3201346989 cites W1963821364 @default.
- W3201346989 cites W1970088130 @default.
- W3201346989 cites W1994940238 @default.
- W3201346989 cites W2062769337 @default.
- W3201346989 cites W2062797058 @default.
- W3201346989 cites W2108898793 @default.
- W3201346989 cites W2112429379 @default.
- W3201346989 cites W2122646361 @default.
- W3201346989 cites W2132870739 @default.
- W3201346989 cites W2134490011 @default.
- W3201346989 cites W2162275200 @default.
- W3201346989 cites W2383005638 @default.
- W3201346989 cites W2496323672 @default.
- W3201346989 cites W2583803680 @default.
- W3201346989 cites W2585247128 @default.
- W3201346989 cites W2622489478 @default.
- W3201346989 cites W2741114205 @default.
- W3201346989 cites W2743138268 @default.
- W3201346989 cites W2784052497 @default.
- W3201346989 cites W2808544127 @default.
- W3201346989 cites W2809299793 @default.
- W3201346989 cites W2891220989 @default.
- W3201346989 cites W2897862648 @default.
- W3201346989 cites W2908027240 @default.
- W3201346989 cites W2914080035 @default.
- W3201346989 cites W2944250323 @default.
- W3201346989 cites W2950723285 @default.
- W3201346989 cites W2962975498 @default.
- W3201346989 cites W2963049059 @default.
- W3201346989 cites W2963486145 @default.
- W3201346989 cites W2963707260 @default.
- W3201346989 cites W2963893312 @default.
- W3201346989 cites W2983576094 @default.
- W3201346989 cites W2996451395 @default.
- W3201346989 cites W3010920176 @default.
- W3201346989 cites W3015799890 @default.
- W3201346989 cites W3023308054 @default.
- W3201346989 cites W3086725547 @default.
- W3201346989 cites W3104097132 @default.
- W3201346989 cites W3130120950 @default.
- W3201346989 doi "https://doi.org/10.1002/int.22683" @default.
- W3201346989 hasPublicationYear "2021" @default.
- W3201346989 type Work @default.
- W3201346989 sameAs 3201346989 @default.
- W3201346989 citedByCount "9" @default.
- W3201346989 countsByYear W32013469892022 @default.
- W3201346989 countsByYear W32013469892023 @default.
- W3201346989 crossrefType "journal-article" @default.
- W3201346989 hasAuthorship W3201346989A5005638593 @default.
- W3201346989 hasAuthorship W3201346989A5044389422 @default.
- W3201346989 hasAuthorship W3201346989A5045344252 @default.
- W3201346989 hasAuthorship W3201346989A5083355786 @default.
- W3201346989 hasAuthorship W3201346989A5091320821 @default.
- W3201346989 hasBestOaLocation W32013469891 @default.
- W3201346989 hasConcept C101738243 @default.
- W3201346989 hasConcept C121332964 @default.
- W3201346989 hasConcept C124101348 @default.
- W3201346989 hasConcept C124952713 @default.
- W3201346989 hasConcept C12997251 @default.
- W3201346989 hasConcept C132525143 @default.
- W3201346989 hasConcept C142362112 @default.
- W3201346989 hasConcept C153180895 @default.
- W3201346989 hasConcept C154945302 @default.
- W3201346989 hasConcept C26873012 @default.
- W3201346989 hasConcept C2776562905 @default.
- W3201346989 hasConcept C2780980858 @default.
- W3201346989 hasConcept C41008148 @default.
- W3201346989 hasConcept C41608201 @default.
- W3201346989 hasConcept C50644808 @default.
- W3201346989 hasConcept C59404180 @default.
- W3201346989 hasConcept C739882 @default.
- W3201346989 hasConcept C80444323 @default.
- W3201346989 hasConcept C83665646 @default.
- W3201346989 hasConceptScore W3201346989C101738243 @default.
- W3201346989 hasConceptScore W3201346989C121332964 @default.
- W3201346989 hasConceptScore W3201346989C124101348 @default.
- W3201346989 hasConceptScore W3201346989C124952713 @default.
- W3201346989 hasConceptScore W3201346989C12997251 @default.
- W3201346989 hasConceptScore W3201346989C132525143 @default.
- W3201346989 hasConceptScore W3201346989C142362112 @default.
- W3201346989 hasConceptScore W3201346989C153180895 @default.
- W3201346989 hasConceptScore W3201346989C154945302 @default.
- W3201346989 hasConceptScore W3201346989C26873012 @default.
- W3201346989 hasConceptScore W3201346989C2776562905 @default.
- W3201346989 hasConceptScore W3201346989C2780980858 @default.
- W3201346989 hasConceptScore W3201346989C41008148 @default.
- W3201346989 hasConceptScore W3201346989C41608201 @default.
- W3201346989 hasConceptScore W3201346989C50644808 @default.