Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201423182> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3201423182 endingPage "e11" @default.
- W3201423182 startingPage "e1" @default.
- W3201423182 abstract "The conundrum of determining how to treat a patient with Class III malocclusion is significant, creating a burden on the patient and challenging the orthodontist. The objective of this study was to employ a statistical prediction model derived from our previous cephalometric data on 5 predominant subtypes of skeletal Class III malocclusion to test the hypothesis that Class III subtypes are associated with treatment modalities (eg, surgical vs nonsurgical) and treatment outcome.Pretreatment lateral cephalometric records of 148 patients were digitized for 67 cephalometric variables, and measurements were applied to a mathematical equation to assign a Class III subtype. Subjects were assigned to either a surgical or nonsurgical group depending on the treatment received. Treatment outcome was determined by facial profile and clinical photographs. Log binomial models were used for statistical analysis.Subtype 1 (mandibular prognathic) patients were 3.5 × more likely to undergo orthognathic surgery than subtypes 2/3 (maxillary deficient) and 5.3 × more likely than 4/5 (combination). Subtype 1 patients were also 1.5 × more likely to experience treatment failure than subtypes 2/3 (maxillary deficient) and 4/5 (combination).This assessment of a systematic method to characterize patients with Class III malocclusion into subtypes revealed that subtype 1 (mandibular prognathic) showed a likelihood to undergo orthognathic surgery while subtypes 2/3 experienced significantly lower treatment failure (in response to orthodontics alone). Further refinement of the equation may yield a reliable prediction model for earlier identification of surgical patients and also provide predictive power of Class III treatment outcomes." @default.
- W3201423182 created "2021-09-27" @default.
- W3201423182 creator A5001290714 @default.
- W3201423182 creator A5012574340 @default.
- W3201423182 creator A5028629797 @default.
- W3201423182 creator A5057433099 @default.
- W3201423182 creator A5062623587 @default.
- W3201423182 creator A5064163610 @default.
- W3201423182 date "2022-01-01" @default.
- W3201423182 modified "2023-10-01" @default.
- W3201423182 title "A machine learning approach to determine the prognosis of patients with Class III malocclusion" @default.
- W3201423182 cites W1907664591 @default.
- W3201423182 cites W1970744793 @default.
- W3201423182 cites W1987415400 @default.
- W3201423182 cites W1987573622 @default.
- W3201423182 cites W2007527993 @default.
- W3201423182 cites W2026216725 @default.
- W3201423182 cites W2027964881 @default.
- W3201423182 cites W2064334570 @default.
- W3201423182 cites W2100698837 @default.
- W3201423182 cites W2105885158 @default.
- W3201423182 cites W2128405265 @default.
- W3201423182 cites W2157627506 @default.
- W3201423182 cites W2318936502 @default.
- W3201423182 cites W2474544034 @default.
- W3201423182 cites W2963798943 @default.
- W3201423182 cites W2996400058 @default.
- W3201423182 cites W3001058810 @default.
- W3201423182 cites W3095695685 @default.
- W3201423182 cites W4230288702 @default.
- W3201423182 cites W4235997158 @default.
- W3201423182 doi "https://doi.org/10.1016/j.ajodo.2021.06.012" @default.
- W3201423182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34535348" @default.
- W3201423182 hasPublicationYear "2022" @default.
- W3201423182 type Work @default.
- W3201423182 sameAs 3201423182 @default.
- W3201423182 citedByCount "4" @default.
- W3201423182 countsByYear W32014231822023 @default.
- W3201423182 crossrefType "journal-article" @default.
- W3201423182 hasAuthorship W3201423182A5001290714 @default.
- W3201423182 hasAuthorship W3201423182A5012574340 @default.
- W3201423182 hasAuthorship W3201423182A5028629797 @default.
- W3201423182 hasAuthorship W3201423182A5057433099 @default.
- W3201423182 hasAuthorship W3201423182A5062623587 @default.
- W3201423182 hasAuthorship W3201423182A5064163610 @default.
- W3201423182 hasConcept C122246415 @default.
- W3201423182 hasConcept C199343813 @default.
- W3201423182 hasConcept C2776347944 @default.
- W3201423182 hasConcept C2777081826 @default.
- W3201423182 hasConcept C2780109367 @default.
- W3201423182 hasConcept C29694066 @default.
- W3201423182 hasConcept C71924100 @default.
- W3201423182 hasConceptScore W3201423182C122246415 @default.
- W3201423182 hasConceptScore W3201423182C199343813 @default.
- W3201423182 hasConceptScore W3201423182C2776347944 @default.
- W3201423182 hasConceptScore W3201423182C2777081826 @default.
- W3201423182 hasConceptScore W3201423182C2780109367 @default.
- W3201423182 hasConceptScore W3201423182C29694066 @default.
- W3201423182 hasConceptScore W3201423182C71924100 @default.
- W3201423182 hasIssue "1" @default.
- W3201423182 hasLocation W32014231821 @default.
- W3201423182 hasLocation W32014231822 @default.
- W3201423182 hasOpenAccess W3201423182 @default.
- W3201423182 hasPrimaryLocation W32014231821 @default.
- W3201423182 hasRelatedWork W1964502450 @default.
- W3201423182 hasRelatedWork W2011206055 @default.
- W3201423182 hasRelatedWork W2023008007 @default.
- W3201423182 hasRelatedWork W2129518942 @default.
- W3201423182 hasRelatedWork W2148853204 @default.
- W3201423182 hasRelatedWork W2372825189 @default.
- W3201423182 hasRelatedWork W2409781227 @default.
- W3201423182 hasRelatedWork W2982533555 @default.
- W3201423182 hasRelatedWork W3012893869 @default.
- W3201423182 hasRelatedWork W2413819293 @default.
- W3201423182 hasVolume "161" @default.
- W3201423182 isParatext "false" @default.
- W3201423182 isRetracted "false" @default.
- W3201423182 magId "3201423182" @default.
- W3201423182 workType "article" @default.