Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201423477> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3201423477 endingPage "149" @default.
- W3201423477 startingPage "139" @default.
- W3201423477 abstract "In recent years, machine learning and deep learning have become popular methods for financial data analysis, including financial textual data, numerical data, and graphical data. One of the most popular and complex deep learning in finance topics is future stock prediction. The difficulty that causes the future stock forecast is that there are too many different factors that affect the amplitude and frequency of the rise and fall of stocks at the same time. Some of the company-specific factors that can affect the share price like news releases on earnings and profits, future estimated earnings, the announcement of dividends, introduction of a new product or a product recall, secure a new large contract, employee layoffs, a major change of management, anticipated takeover or merger, and accounting errors or scandals. Furthermore, these factors are only company factors, and other factors affect the future trend of stocks, such as industry performance, investor sentiment, and economic factors. This paper proposes a novel deep learning approach to predict future stock movement. The model employs a blending ensemble learning method to combine two recurrent neural networks, followed by a fully connected neural network. In our research, we use the S&P 500 Index as our test case. Our experiments show that our blending ensemble deep learning model outperforms the best existing prediction model substantially using the same dataset, reducing the mean-squared error from 438.94 to 186.32, a 57.55% reduction, increasing precision rate by 40%, recall by 50%, F1-score by 44.78%, and movement direction accuracy by 33.34%, respectively. The purpose of this work is to explain our design philosophy and show that ensemble deep learning technologies can truly predict future stock price trends more effectively and can better assist investors in making the right investment decision than other traditional methods." @default.
- W3201423477 created "2021-09-27" @default.
- W3201423477 creator A5009977767 @default.
- W3201423477 creator A5064842058 @default.
- W3201423477 date "2021-09-17" @default.
- W3201423477 modified "2023-10-09" @default.
- W3201423477 title "A novel ensemble deep learning model for stock prediction based on stock prices and news" @default.
- W3201423477 cites W1496934729 @default.
- W3201423477 cites W1534477342 @default.
- W3201423477 cites W1751998797 @default.
- W3201423477 cites W2064675550 @default.
- W3201423477 cites W2071934013 @default.
- W3201423477 cites W2099813784 @default.
- W3201423477 cites W2110242546 @default.
- W3201423477 cites W2122026259 @default.
- W3201423477 cites W2126267628 @default.
- W3201423477 cites W2510046892 @default.
- W3201423477 cites W2585092264 @default.
- W3201423477 cites W2734986640 @default.
- W3201423477 cites W2769525524 @default.
- W3201423477 cites W2774559076 @default.
- W3201423477 cites W2964199361 @default.
- W3201423477 cites W3016486868 @default.
- W3201423477 cites W3038844667 @default.
- W3201423477 cites W4214717370 @default.
- W3201423477 cites W4236047370 @default.
- W3201423477 doi "https://doi.org/10.1007/s41060-021-00279-9" @default.
- W3201423477 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8446482" @default.
- W3201423477 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34549080" @default.
- W3201423477 hasPublicationYear "2021" @default.
- W3201423477 type Work @default.
- W3201423477 sameAs 3201423477 @default.
- W3201423477 citedByCount "40" @default.
- W3201423477 countsByYear W32014234772022 @default.
- W3201423477 countsByYear W32014234772023 @default.
- W3201423477 crossrefType "journal-article" @default.
- W3201423477 hasAuthorship W3201423477A5009977767 @default.
- W3201423477 hasAuthorship W3201423477A5064842058 @default.
- W3201423477 hasBestOaLocation W32014234771 @default.
- W3201423477 hasConcept C10138342 @default.
- W3201423477 hasConcept C108583219 @default.
- W3201423477 hasConcept C116168712 @default.
- W3201423477 hasConcept C119857082 @default.
- W3201423477 hasConcept C119898033 @default.
- W3201423477 hasConcept C127413603 @default.
- W3201423477 hasConcept C149782125 @default.
- W3201423477 hasConcept C151730666 @default.
- W3201423477 hasConcept C154945302 @default.
- W3201423477 hasConcept C162324750 @default.
- W3201423477 hasConcept C204036174 @default.
- W3201423477 hasConcept C2780299701 @default.
- W3201423477 hasConcept C2780762169 @default.
- W3201423477 hasConcept C2781426361 @default.
- W3201423477 hasConcept C41008148 @default.
- W3201423477 hasConcept C50644808 @default.
- W3201423477 hasConcept C78519656 @default.
- W3201423477 hasConcept C86803240 @default.
- W3201423477 hasConceptScore W3201423477C10138342 @default.
- W3201423477 hasConceptScore W3201423477C108583219 @default.
- W3201423477 hasConceptScore W3201423477C116168712 @default.
- W3201423477 hasConceptScore W3201423477C119857082 @default.
- W3201423477 hasConceptScore W3201423477C119898033 @default.
- W3201423477 hasConceptScore W3201423477C127413603 @default.
- W3201423477 hasConceptScore W3201423477C149782125 @default.
- W3201423477 hasConceptScore W3201423477C151730666 @default.
- W3201423477 hasConceptScore W3201423477C154945302 @default.
- W3201423477 hasConceptScore W3201423477C162324750 @default.
- W3201423477 hasConceptScore W3201423477C204036174 @default.
- W3201423477 hasConceptScore W3201423477C2780299701 @default.
- W3201423477 hasConceptScore W3201423477C2780762169 @default.
- W3201423477 hasConceptScore W3201423477C2781426361 @default.
- W3201423477 hasConceptScore W3201423477C41008148 @default.
- W3201423477 hasConceptScore W3201423477C50644808 @default.
- W3201423477 hasConceptScore W3201423477C78519656 @default.
- W3201423477 hasConceptScore W3201423477C86803240 @default.
- W3201423477 hasIssue "2" @default.
- W3201423477 hasLocation W32014234771 @default.
- W3201423477 hasLocation W32014234772 @default.
- W3201423477 hasLocation W32014234773 @default.
- W3201423477 hasLocation W32014234774 @default.
- W3201423477 hasOpenAccess W3201423477 @default.
- W3201423477 hasPrimaryLocation W32014234771 @default.
- W3201423477 hasRelatedWork W3136979370 @default.
- W3201423477 hasRelatedWork W4220785415 @default.
- W3201423477 hasRelatedWork W4223943233 @default.
- W3201423477 hasRelatedWork W4308112567 @default.
- W3201423477 hasRelatedWork W4309045103 @default.
- W3201423477 hasRelatedWork W4310989423 @default.
- W3201423477 hasRelatedWork W4312200629 @default.
- W3201423477 hasRelatedWork W4360585206 @default.
- W3201423477 hasRelatedWork W4364306694 @default.
- W3201423477 hasRelatedWork W4380086463 @default.
- W3201423477 hasVolume "13" @default.
- W3201423477 isParatext "false" @default.
- W3201423477 isRetracted "false" @default.
- W3201423477 magId "3201423477" @default.
- W3201423477 workType "article" @default.