Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201465610> ?p ?o ?g. }
- W3201465610 endingPage "10453" @default.
- W3201465610 startingPage "10453" @default.
- W3201465610 abstract "Improving the accuracy of wind power forecasting is an important measure to deal with the uncertainty and volatility of wind power. Wind speed and wind direction are the most important factors affecting the power generation of wind turbines. In this paper, we propose a wind power forecasting method that combines the sparrow search algorithm (SSA) with the deep extreme learning machine (DELM). Based on the DELM model, the length of the time series’ influence on the performance of the neural network is validated through the comparison of the forecast error indexes, and the optimal time series length of the wind power is determined. The sparrow search algorithm is used to optimize its parameters to solve the problem of random changes in model input weights and thresholds. The proposed SSA-DELM model is validated using the measured data of a certain wind turbine, and various forecasting indexes are compared with several current wind power forecasting methods. The experimental results show that the proposed model has better performance in ultra-short-term wind power forecasting, and its coefficient of determination (R²), mean absolute error (MAE), and root mean square error (RMSE) are 0.927, 69.803, and 115.446, respectively." @default.
- W3201465610 created "2021-09-27" @default.
- W3201465610 creator A5009095415 @default.
- W3201465610 creator A5009872223 @default.
- W3201465610 creator A5010870237 @default.
- W3201465610 creator A5015645383 @default.
- W3201465610 creator A5034763698 @default.
- W3201465610 creator A5050932904 @default.
- W3201465610 creator A5060335470 @default.
- W3201465610 date "2021-09-20" @default.
- W3201465610 modified "2023-10-17" @default.
- W3201465610 title "Ultra Short-Term Wind Power Forecasting Based on Sparrow Search Algorithm Optimization Deep Extreme Learning Machine" @default.
- W3201465610 cites W2776252545 @default.
- W3201465610 cites W2786729166 @default.
- W3201465610 cites W2791937529 @default.
- W3201465610 cites W2792041968 @default.
- W3201465610 cites W2793139759 @default.
- W3201465610 cites W2809954934 @default.
- W3201465610 cites W2886292843 @default.
- W3201465610 cites W2911265761 @default.
- W3201465610 cites W2920184877 @default.
- W3201465610 cites W2921759887 @default.
- W3201465610 cites W2944686185 @default.
- W3201465610 cites W2973960501 @default.
- W3201465610 cites W2979616178 @default.
- W3201465610 cites W2979803256 @default.
- W3201465610 cites W2980223420 @default.
- W3201465610 cites W2983687539 @default.
- W3201465610 cites W3003152171 @default.
- W3201465610 cites W3007939291 @default.
- W3201465610 cites W3014565011 @default.
- W3201465610 cites W3014747440 @default.
- W3201465610 cites W3035869584 @default.
- W3201465610 cites W3093877613 @default.
- W3201465610 cites W3094166083 @default.
- W3201465610 cites W3111374748 @default.
- W3201465610 cites W3116175635 @default.
- W3201465610 cites W3118252934 @default.
- W3201465610 cites W3123742910 @default.
- W3201465610 cites W3128049501 @default.
- W3201465610 cites W3133043993 @default.
- W3201465610 cites W3134278710 @default.
- W3201465610 cites W3136101012 @default.
- W3201465610 cites W3157039972 @default.
- W3201465610 cites W3174650679 @default.
- W3201465610 cites W4240615119 @default.
- W3201465610 doi "https://doi.org/10.3390/su131810453" @default.
- W3201465610 hasPublicationYear "2021" @default.
- W3201465610 type Work @default.
- W3201465610 sameAs 3201465610 @default.
- W3201465610 citedByCount "20" @default.
- W3201465610 countsByYear W32014656102022 @default.
- W3201465610 countsByYear W32014656102023 @default.
- W3201465610 crossrefType "journal-article" @default.
- W3201465610 hasAuthorship W3201465610A5009095415 @default.
- W3201465610 hasAuthorship W3201465610A5009872223 @default.
- W3201465610 hasAuthorship W3201465610A5010870237 @default.
- W3201465610 hasAuthorship W3201465610A5015645383 @default.
- W3201465610 hasAuthorship W3201465610A5034763698 @default.
- W3201465610 hasAuthorship W3201465610A5050932904 @default.
- W3201465610 hasAuthorship W3201465610A5060335470 @default.
- W3201465610 hasBestOaLocation W32014656101 @default.
- W3201465610 hasConcept C105795698 @default.
- W3201465610 hasConcept C11413529 @default.
- W3201465610 hasConcept C119599485 @default.
- W3201465610 hasConcept C119857082 @default.
- W3201465610 hasConcept C121332964 @default.
- W3201465610 hasConcept C126255220 @default.
- W3201465610 hasConcept C127413603 @default.
- W3201465610 hasConcept C139945424 @default.
- W3201465610 hasConcept C150217764 @default.
- W3201465610 hasConcept C151406439 @default.
- W3201465610 hasConcept C153294291 @default.
- W3201465610 hasConcept C154945302 @default.
- W3201465610 hasConcept C161067210 @default.
- W3201465610 hasConcept C163258240 @default.
- W3201465610 hasConcept C18903297 @default.
- W3201465610 hasConcept C2778449969 @default.
- W3201465610 hasConcept C2778825724 @default.
- W3201465610 hasConcept C2780150128 @default.
- W3201465610 hasConcept C2781084341 @default.
- W3201465610 hasConcept C33923547 @default.
- W3201465610 hasConcept C41008148 @default.
- W3201465610 hasConcept C50644808 @default.
- W3201465610 hasConcept C61797465 @default.
- W3201465610 hasConcept C62520636 @default.
- W3201465610 hasConcept C78519656 @default.
- W3201465610 hasConcept C78600449 @default.
- W3201465610 hasConcept C86803240 @default.
- W3201465610 hasConcept C89227174 @default.
- W3201465610 hasConceptScore W3201465610C105795698 @default.
- W3201465610 hasConceptScore W3201465610C11413529 @default.
- W3201465610 hasConceptScore W3201465610C119599485 @default.
- W3201465610 hasConceptScore W3201465610C119857082 @default.
- W3201465610 hasConceptScore W3201465610C121332964 @default.
- W3201465610 hasConceptScore W3201465610C126255220 @default.
- W3201465610 hasConceptScore W3201465610C127413603 @default.
- W3201465610 hasConceptScore W3201465610C139945424 @default.