Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201471931> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3201471931 endingPage "46" @default.
- W3201471931 startingPage "17" @default.
- W3201471931 abstract "Statistical practice requires various imperfections resulting from the nature of data to be addressed. Data containing different types of measurement errors and irregularities, such as missing observations, have to be modelled. The study presented in the paper concerns the application of the expectation-maximisation (EM) algorithm to calculate maximum likelihood estimates, using an autoregressive model as an example. The model allows describing a process observed only through measurements with certain level of precision and through more than one data series. The studied series are affected by a measurement error and interrupted in some time periods, which causes the information for parameters estimation and later for prediction to be less precise. The presented technique aims to compensate for missing data in time series. The missing data appear in the form of breaks in the source of the signal. The adjustment has been performed by the EM algorithm to a hybrid version, supplemented by the Newton-Raphson method. This technique allows the estimation of more complex models. The formulation of the substantive model of an autoregressive process affected by noise is outlined, as well as the adjustment introduced to overcome the issue of missing data. The extended version of the algorithm has been verified using sampled data from a model serving as an example for the examined process. The verification demonstrated that the joint EM and Newton-Raphson algorithms converged with a relatively small number of iterations and resulted in the restoration of the information lost due to missing data, providing more accurate predictions than the original algorithm. The study also features an example of the application of the supplemented algorithm to some empirical data (in the calculation of a forecasted demand for newspapers)." @default.
- W3201471931 created "2021-09-27" @default.
- W3201471931 creator A5007785973 @default.
- W3201471931 date "2021-08-24" @default.
- W3201471931 modified "2023-10-16" @default.
- W3201471931 title "Predicting in multivariate incomplete time series. Application of the expectation-maximisation algorithm supplemented by the Newton-Raphson method" @default.
- W3201471931 cites W1495297318 @default.
- W3201471931 cites W1544274373 @default.
- W3201471931 cites W1579579143 @default.
- W3201471931 cites W1963718895 @default.
- W3201471931 cites W1984072842 @default.
- W3201471931 cites W2049633694 @default.
- W3201471931 cites W2096904991 @default.
- W3201471931 cites W2100844065 @default.
- W3201471931 cites W2105934661 @default.
- W3201471931 cites W2399543694 @default.
- W3201471931 cites W2480680997 @default.
- W3201471931 cites W2827888205 @default.
- W3201471931 cites W2949125058 @default.
- W3201471931 cites W4205726330 @default.
- W3201471931 cites W4206474475 @default.
- W3201471931 cites W4291327732 @default.
- W3201471931 doi "https://doi.org/10.5604/01.3001.0015.0376" @default.
- W3201471931 hasPublicationYear "2021" @default.
- W3201471931 type Work @default.
- W3201471931 sameAs 3201471931 @default.
- W3201471931 citedByCount "0" @default.
- W3201471931 crossrefType "journal-article" @default.
- W3201471931 hasAuthorship W3201471931A5007785973 @default.
- W3201471931 hasConcept C105795698 @default.
- W3201471931 hasConcept C111919701 @default.
- W3201471931 hasConcept C11413529 @default.
- W3201471931 hasConcept C115961682 @default.
- W3201471931 hasConcept C143724316 @default.
- W3201471931 hasConcept C151406439 @default.
- W3201471931 hasConcept C151730666 @default.
- W3201471931 hasConcept C154945302 @default.
- W3201471931 hasConcept C159877910 @default.
- W3201471931 hasConcept C161584116 @default.
- W3201471931 hasConcept C167928553 @default.
- W3201471931 hasConcept C182081679 @default.
- W3201471931 hasConcept C33923547 @default.
- W3201471931 hasConcept C41008148 @default.
- W3201471931 hasConcept C49781872 @default.
- W3201471931 hasConcept C86803240 @default.
- W3201471931 hasConcept C9357733 @default.
- W3201471931 hasConcept C98045186 @default.
- W3201471931 hasConcept C99498987 @default.
- W3201471931 hasConceptScore W3201471931C105795698 @default.
- W3201471931 hasConceptScore W3201471931C111919701 @default.
- W3201471931 hasConceptScore W3201471931C11413529 @default.
- W3201471931 hasConceptScore W3201471931C115961682 @default.
- W3201471931 hasConceptScore W3201471931C143724316 @default.
- W3201471931 hasConceptScore W3201471931C151406439 @default.
- W3201471931 hasConceptScore W3201471931C151730666 @default.
- W3201471931 hasConceptScore W3201471931C154945302 @default.
- W3201471931 hasConceptScore W3201471931C159877910 @default.
- W3201471931 hasConceptScore W3201471931C161584116 @default.
- W3201471931 hasConceptScore W3201471931C167928553 @default.
- W3201471931 hasConceptScore W3201471931C182081679 @default.
- W3201471931 hasConceptScore W3201471931C33923547 @default.
- W3201471931 hasConceptScore W3201471931C41008148 @default.
- W3201471931 hasConceptScore W3201471931C49781872 @default.
- W3201471931 hasConceptScore W3201471931C86803240 @default.
- W3201471931 hasConceptScore W3201471931C9357733 @default.
- W3201471931 hasConceptScore W3201471931C98045186 @default.
- W3201471931 hasConceptScore W3201471931C99498987 @default.
- W3201471931 hasIssue "1" @default.
- W3201471931 hasLocation W32014719311 @default.
- W3201471931 hasOpenAccess W3201471931 @default.
- W3201471931 hasPrimaryLocation W32014719311 @default.
- W3201471931 hasRelatedWork W1964058989 @default.
- W3201471931 hasRelatedWork W1990148821 @default.
- W3201471931 hasRelatedWork W2127074645 @default.
- W3201471931 hasRelatedWork W2754385338 @default.
- W3201471931 hasRelatedWork W2767035702 @default.
- W3201471931 hasRelatedWork W2974780582 @default.
- W3201471931 hasRelatedWork W302148889 @default.
- W3201471931 hasRelatedWork W4308279103 @default.
- W3201471931 hasRelatedWork W600938750 @default.
- W3201471931 hasRelatedWork W2099750194 @default.
- W3201471931 hasVolume "68" @default.
- W3201471931 isParatext "false" @default.
- W3201471931 isRetracted "false" @default.
- W3201471931 magId "3201471931" @default.
- W3201471931 workType "article" @default.