Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201477813> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3201477813 endingPage "10" @default.
- W3201477813 startingPage "1" @default.
- W3201477813 abstract "Inguinal hernia repair is one of the most frequently conducted surgical procedures worldwide. Laparoscopic inguinal hernia repair is considered to be technically challenging. Artificial intelligence technology has made significant progress in medical imaging, but its application in laparoscopic surgery has not been widely carried out. Our aim is to detect vas deferens images in laparoscopic inguinal hernial repair using the convolutional neural network (CNN) and help surgeons to identify the vas deferens in time. We collected surgery videos from 35 patients with inguinal hernia who underwent laparoscopic hernia repair. We classified and labeled the images of the vas deferens and used the CNN to learn the image features. Totally, 2,600 images (26 patients) were labeled for training and validating the neural network and 1,200 images (6 patients) and 6 short video clips (3 patients) for testing. We adjusted the model parameters and tested the performance of the model under different confidence levels and IoU and used the chi-square to analyze the statistical difference in the video test dataset. We evaluated the model performance by calculating the true positive rate (TPR), true negative rate (TNR), accuracy (ACC), positive predictive value (PPV), and F1-score at different confidence levels of 0.1 to 0.9. In confidence level 0.4, the results were TPR 90.61%, TNR 98.67%, PPV 98.57%, ACC 94.61%, and F1 94.42%, respectively. The average precision (AP) was 92.38% at IoU 0.3. In the video test dataset, the average values of TPR and TNR were 90.11% and 95.76%, respectively, and there was no significant difference among the patients. The results suggest that the CNN can quickly and accurately identify and label vas deferens images in laparoscopic inguinal hernia repair." @default.
- W3201477813 created "2021-09-27" @default.
- W3201477813 creator A5025037252 @default.
- W3201477813 creator A5067865869 @default.
- W3201477813 creator A5090739497 @default.
- W3201477813 date "2021-09-22" @default.
- W3201477813 modified "2023-10-16" @default.
- W3201477813 title "Identification of the Vas Deferens in Laparoscopic Inguinal Hernia Repair Surgery Using the Convolutional Neural Network" @default.
- W3201477813 cites W1481401070 @default.
- W3201477813 cites W1536680647 @default.
- W3201477813 cites W1988837577 @default.
- W3201477813 cites W2037159103 @default.
- W3201477813 cites W2039038041 @default.
- W3201477813 cites W2071592943 @default.
- W3201477813 cites W2082893943 @default.
- W3201477813 cites W2102605133 @default.
- W3201477813 cites W2124272601 @default.
- W3201477813 cites W2130231621 @default.
- W3201477813 cites W2155653793 @default.
- W3201477813 cites W2317579529 @default.
- W3201477813 cites W2383601426 @default.
- W3201477813 cites W2592929672 @default.
- W3201477813 cites W2598028485 @default.
- W3201477813 cites W2607941059 @default.
- W3201477813 cites W2608231518 @default.
- W3201477813 cites W2770114997 @default.
- W3201477813 cites W2777186991 @default.
- W3201477813 cites W2953914369 @default.
- W3201477813 cites W2979072923 @default.
- W3201477813 cites W2991721903 @default.
- W3201477813 cites W639708223 @default.
- W3201477813 doi "https://doi.org/10.1155/2021/5578089" @default.
- W3201477813 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8481069" @default.
- W3201477813 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34603649" @default.
- W3201477813 hasPublicationYear "2021" @default.
- W3201477813 type Work @default.
- W3201477813 sameAs 3201477813 @default.
- W3201477813 citedByCount "2" @default.
- W3201477813 countsByYear W32014778132022 @default.
- W3201477813 countsByYear W32014778132023 @default.
- W3201477813 crossrefType "journal-article" @default.
- W3201477813 hasAuthorship W3201477813A5025037252 @default.
- W3201477813 hasAuthorship W3201477813A5067865869 @default.
- W3201477813 hasAuthorship W3201477813A5090739497 @default.
- W3201477813 hasBestOaLocation W32014778131 @default.
- W3201477813 hasConcept C126322002 @default.
- W3201477813 hasConcept C141071460 @default.
- W3201477813 hasConcept C154945302 @default.
- W3201477813 hasConcept C2776111594 @default.
- W3201477813 hasConcept C2776724281 @default.
- W3201477813 hasConcept C2778210472 @default.
- W3201477813 hasConcept C2779096551 @default.
- W3201477813 hasConcept C2780047204 @default.
- W3201477813 hasConcept C2781132756 @default.
- W3201477813 hasConcept C41008148 @default.
- W3201477813 hasConcept C44249647 @default.
- W3201477813 hasConcept C71924100 @default.
- W3201477813 hasConcept C81363708 @default.
- W3201477813 hasConceptScore W3201477813C126322002 @default.
- W3201477813 hasConceptScore W3201477813C141071460 @default.
- W3201477813 hasConceptScore W3201477813C154945302 @default.
- W3201477813 hasConceptScore W3201477813C2776111594 @default.
- W3201477813 hasConceptScore W3201477813C2776724281 @default.
- W3201477813 hasConceptScore W3201477813C2778210472 @default.
- W3201477813 hasConceptScore W3201477813C2779096551 @default.
- W3201477813 hasConceptScore W3201477813C2780047204 @default.
- W3201477813 hasConceptScore W3201477813C2781132756 @default.
- W3201477813 hasConceptScore W3201477813C41008148 @default.
- W3201477813 hasConceptScore W3201477813C44249647 @default.
- W3201477813 hasConceptScore W3201477813C71924100 @default.
- W3201477813 hasConceptScore W3201477813C81363708 @default.
- W3201477813 hasFunder F4320324016 @default.
- W3201477813 hasLocation W32014778131 @default.
- W3201477813 hasLocation W32014778132 @default.
- W3201477813 hasLocation W32014778133 @default.
- W3201477813 hasLocation W32014778134 @default.
- W3201477813 hasLocation W32014778135 @default.
- W3201477813 hasOpenAccess W3201477813 @default.
- W3201477813 hasPrimaryLocation W32014778131 @default.
- W3201477813 hasRelatedWork W174632727 @default.
- W3201477813 hasRelatedWork W2020082970 @default.
- W3201477813 hasRelatedWork W2024857106 @default.
- W3201477813 hasRelatedWork W2082052336 @default.
- W3201477813 hasRelatedWork W2376454033 @default.
- W3201477813 hasRelatedWork W2412887287 @default.
- W3201477813 hasRelatedWork W2418386809 @default.
- W3201477813 hasRelatedWork W2591138587 @default.
- W3201477813 hasRelatedWork W2770490904 @default.
- W3201477813 hasRelatedWork W3029883246 @default.
- W3201477813 hasVolume "2021" @default.
- W3201477813 isParatext "false" @default.
- W3201477813 isRetracted "false" @default.
- W3201477813 magId "3201477813" @default.
- W3201477813 workType "article" @default.