Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201482372> ?p ?o ?g. }
- W3201482372 abstract "Supply chain literature reveals that study of resilient supply chains and bullwhip effect (BE) have been receiving special attention during pandemic for supply chains with seasonal as well as nonseasonal demand components. The BE phenomenon has been detected in various industries and sectors, and causes multiple inefficiencies such as higher costs of producing more than needed, wastage and transportation costs. As a result, BE forecast is of great importance for academics and supply chain managers. Despite the multitude of studies that have emerged addressing this issue, the impact of the quality of dynamic forecasts on the BE has received limited coverage in the literature. Optimal dynamic forecasts of the demand could allow managers to mitigate the upstream amplification of orders (and thus the BE), as well as reduce unnecessary inventory costs. Order quantity and BE in a supply chain depend on the forecast of the future demand. Usually minimum mean square error (MMSE) forecasts of the future demand are obtained by fitting an appropriate seasonal auto-regressive moving average (ARMA) time series model. However, a major drawback of the MMSE forecasting method is that it does not provide the associated risk forecasts. In this paper, a simple yet effective machine learning demand forecasting approach without fitting any time series model is presented.Specifically, a novel data driven machine learning algorithm that bypasses traditional forecasting steps and allows forecast weights to be optimized by minimizing the one-step ahead forecast error sum of squares (FESS) is proposed. A novel stability metric of a supply chain is proposed as the risk adjusted forecast of the future demand. It is shown that the risk adjusted forecasts can be used to check whether a given supply chain is resilient. In order to be more resilient and competitive in the current market, business leaders around the world agree that it is necessary to modernize and make major changes to their supply chain strategies. Demand risk forecasts obtained by the proposed machine learning approach allow supply chain managers to enhance the forecasting power of the order quantity and construct more resilient supply chains. The performance of proposed approach is evaluated through numerical experiments using simulated data and weekly demand data of two products. The results show that the performance of the proposed forecasts and risk adjusted forecasts of the future demand are better than the commonly used MMSE forecasts of the future demand." @default.
- W3201482372 created "2021-09-27" @default.
- W3201482372 creator A5001499957 @default.
- W3201482372 creator A5013006175 @default.
- W3201482372 creator A5029933181 @default.
- W3201482372 creator A5043885890 @default.
- W3201482372 creator A5048266821 @default.
- W3201482372 date "2021-07-01" @default.
- W3201482372 modified "2023-09-29" @default.
- W3201482372 title "A Novel Dynamic Demand Forecasting Model for Resilient Supply Chains using Machine Learning" @default.
- W3201482372 cites W1980684601 @default.
- W3201482372 cites W1985008713 @default.
- W3201482372 cites W2003965326 @default.
- W3201482372 cites W2043052381 @default.
- W3201482372 cites W2053273683 @default.
- W3201482372 cites W2085349296 @default.
- W3201482372 cites W2129653077 @default.
- W3201482372 cites W2166304961 @default.
- W3201482372 cites W2178204454 @default.
- W3201482372 cites W2596700933 @default.
- W3201482372 cites W2945232411 @default.
- W3201482372 cites W2957325811 @default.
- W3201482372 cites W3087959594 @default.
- W3201482372 cites W2618679402 @default.
- W3201482372 doi "https://doi.org/10.1109/compsac51774.2021.00040" @default.
- W3201482372 hasPublicationYear "2021" @default.
- W3201482372 type Work @default.
- W3201482372 sameAs 3201482372 @default.
- W3201482372 citedByCount "5" @default.
- W3201482372 countsByYear W32014823722021 @default.
- W3201482372 countsByYear W32014823722022 @default.
- W3201482372 countsByYear W32014823722023 @default.
- W3201482372 crossrefType "proceedings-article" @default.
- W3201482372 hasAuthorship W3201482372A5001499957 @default.
- W3201482372 hasAuthorship W3201482372A5013006175 @default.
- W3201482372 hasAuthorship W3201482372A5029933181 @default.
- W3201482372 hasAuthorship W3201482372A5043885890 @default.
- W3201482372 hasAuthorship W3201482372A5048266821 @default.
- W3201482372 hasConcept C108713360 @default.
- W3201482372 hasConcept C111472728 @default.
- W3201482372 hasConcept C119857082 @default.
- W3201482372 hasConcept C120330832 @default.
- W3201482372 hasConcept C127413603 @default.
- W3201482372 hasConcept C138885662 @default.
- W3201482372 hasConcept C144133560 @default.
- W3201482372 hasConcept C149782125 @default.
- W3201482372 hasConcept C151406439 @default.
- W3201482372 hasConcept C162324750 @default.
- W3201482372 hasConcept C162853370 @default.
- W3201482372 hasConcept C175444787 @default.
- W3201482372 hasConcept C175706884 @default.
- W3201482372 hasConcept C176217482 @default.
- W3201482372 hasConcept C178595485 @default.
- W3201482372 hasConcept C191172861 @default.
- W3201482372 hasConcept C193809577 @default.
- W3201482372 hasConcept C21547014 @default.
- W3201482372 hasConcept C2779530757 @default.
- W3201482372 hasConcept C2781468064 @default.
- W3201482372 hasConcept C31258907 @default.
- W3201482372 hasConcept C31972630 @default.
- W3201482372 hasConcept C41008148 @default.
- W3201482372 hasConcept C42475967 @default.
- W3201482372 hasConcept C44104985 @default.
- W3201482372 hasConceptScore W3201482372C108713360 @default.
- W3201482372 hasConceptScore W3201482372C111472728 @default.
- W3201482372 hasConceptScore W3201482372C119857082 @default.
- W3201482372 hasConceptScore W3201482372C120330832 @default.
- W3201482372 hasConceptScore W3201482372C127413603 @default.
- W3201482372 hasConceptScore W3201482372C138885662 @default.
- W3201482372 hasConceptScore W3201482372C144133560 @default.
- W3201482372 hasConceptScore W3201482372C149782125 @default.
- W3201482372 hasConceptScore W3201482372C151406439 @default.
- W3201482372 hasConceptScore W3201482372C162324750 @default.
- W3201482372 hasConceptScore W3201482372C162853370 @default.
- W3201482372 hasConceptScore W3201482372C175444787 @default.
- W3201482372 hasConceptScore W3201482372C175706884 @default.
- W3201482372 hasConceptScore W3201482372C176217482 @default.
- W3201482372 hasConceptScore W3201482372C178595485 @default.
- W3201482372 hasConceptScore W3201482372C191172861 @default.
- W3201482372 hasConceptScore W3201482372C193809577 @default.
- W3201482372 hasConceptScore W3201482372C21547014 @default.
- W3201482372 hasConceptScore W3201482372C2779530757 @default.
- W3201482372 hasConceptScore W3201482372C2781468064 @default.
- W3201482372 hasConceptScore W3201482372C31258907 @default.
- W3201482372 hasConceptScore W3201482372C31972630 @default.
- W3201482372 hasConceptScore W3201482372C41008148 @default.
- W3201482372 hasConceptScore W3201482372C42475967 @default.
- W3201482372 hasConceptScore W3201482372C44104985 @default.
- W3201482372 hasLocation W32014823721 @default.
- W3201482372 hasOpenAccess W3201482372 @default.
- W3201482372 hasPrimaryLocation W32014823721 @default.
- W3201482372 hasRelatedWork W138737054 @default.
- W3201482372 hasRelatedWork W1605612507 @default.
- W3201482372 hasRelatedWork W1873652572 @default.
- W3201482372 hasRelatedWork W1998197049 @default.
- W3201482372 hasRelatedWork W2025420296 @default.
- W3201482372 hasRelatedWork W2123594576 @default.
- W3201482372 hasRelatedWork W2146657021 @default.
- W3201482372 hasRelatedWork W2378738146 @default.
- W3201482372 hasRelatedWork W4206691464 @default.