Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201488360> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3201488360 endingPage "113829" @default.
- W3201488360 startingPage "113829" @default.
- W3201488360 abstract "As a widely used model, Mixture Density Model (MDM) is traditionally solved by Expectation–Maximization (EM) algorithm. EM maximizes a lower bound function iteratively, especially for exponential families. This paper managed to improve EM by combining it with Total Least Squares (TLS), proposing a new algorithm called the TLS-EM algorithm. In this algorithm, parameters are divided into two groups, linear parameters and sub-model parameters. They are solved in each iteration separately. First, data set is separated in different intervals and the conditional maximizing question is transformed into the over-determined linear equations. TLS is adopted to solve these equations and calculate linear parameters, with sub-model parameters fixed. Second, sub-model parameters are solved with EM. Properties of TLS-EM have been provided with proofs. Combining the properties of TLS, EM and the properties of its own, TLS-EM not only inherits most advantages of EM but also improves it in most cases, especially in bad initial or bad model conditions. Numerical experiments confirm these properties." @default.
- W3201488360 created "2021-09-27" @default.
- W3201488360 creator A5014988509 @default.
- W3201488360 creator A5021474319 @default.
- W3201488360 date "2022-03-01" @default.
- W3201488360 modified "2023-09-27" @default.
- W3201488360 title "TLS-EM algorithm of Mixture Density Models for exponential families" @default.
- W3201488360 cites W1548390947 @default.
- W3201488360 cites W1967639437 @default.
- W3201488360 cites W1981367467 @default.
- W3201488360 cites W2004826069 @default.
- W3201488360 cites W2008229822 @default.
- W3201488360 cites W2015881065 @default.
- W3201488360 cites W2021137021 @default.
- W3201488360 cites W2034819163 @default.
- W3201488360 cites W2047072121 @default.
- W3201488360 cites W2052261993 @default.
- W3201488360 cites W2053742104 @default.
- W3201488360 cites W2090165180 @default.
- W3201488360 cites W2097583558 @default.
- W3201488360 cites W2118254160 @default.
- W3201488360 cites W2521877371 @default.
- W3201488360 cites W2589756559 @default.
- W3201488360 cites W2607224862 @default.
- W3201488360 cites W2627006445 @default.
- W3201488360 cites W2750836333 @default.
- W3201488360 cites W2907565313 @default.
- W3201488360 cites W2911742394 @default.
- W3201488360 cites W2966608018 @default.
- W3201488360 doi "https://doi.org/10.1016/j.cam.2021.113829" @default.
- W3201488360 hasPublicationYear "2022" @default.
- W3201488360 type Work @default.
- W3201488360 sameAs 3201488360 @default.
- W3201488360 citedByCount "0" @default.
- W3201488360 crossrefType "journal-article" @default.
- W3201488360 hasAuthorship W3201488360A5014988509 @default.
- W3201488360 hasAuthorship W3201488360A5021474319 @default.
- W3201488360 hasConcept C105795698 @default.
- W3201488360 hasConcept C108710211 @default.
- W3201488360 hasConcept C11413529 @default.
- W3201488360 hasConcept C126255220 @default.
- W3201488360 hasConcept C134306372 @default.
- W3201488360 hasConcept C14036430 @default.
- W3201488360 hasConcept C151376022 @default.
- W3201488360 hasConcept C177264268 @default.
- W3201488360 hasConcept C182081679 @default.
- W3201488360 hasConcept C199360897 @default.
- W3201488360 hasConcept C2524010 @default.
- W3201488360 hasConcept C2776330181 @default.
- W3201488360 hasConcept C28826006 @default.
- W3201488360 hasConcept C33923547 @default.
- W3201488360 hasConcept C41008148 @default.
- W3201488360 hasConcept C49781872 @default.
- W3201488360 hasConcept C55974624 @default.
- W3201488360 hasConcept C78458016 @default.
- W3201488360 hasConcept C86803240 @default.
- W3201488360 hasConceptScore W3201488360C105795698 @default.
- W3201488360 hasConceptScore W3201488360C108710211 @default.
- W3201488360 hasConceptScore W3201488360C11413529 @default.
- W3201488360 hasConceptScore W3201488360C126255220 @default.
- W3201488360 hasConceptScore W3201488360C134306372 @default.
- W3201488360 hasConceptScore W3201488360C14036430 @default.
- W3201488360 hasConceptScore W3201488360C151376022 @default.
- W3201488360 hasConceptScore W3201488360C177264268 @default.
- W3201488360 hasConceptScore W3201488360C182081679 @default.
- W3201488360 hasConceptScore W3201488360C199360897 @default.
- W3201488360 hasConceptScore W3201488360C2524010 @default.
- W3201488360 hasConceptScore W3201488360C2776330181 @default.
- W3201488360 hasConceptScore W3201488360C28826006 @default.
- W3201488360 hasConceptScore W3201488360C33923547 @default.
- W3201488360 hasConceptScore W3201488360C41008148 @default.
- W3201488360 hasConceptScore W3201488360C49781872 @default.
- W3201488360 hasConceptScore W3201488360C55974624 @default.
- W3201488360 hasConceptScore W3201488360C78458016 @default.
- W3201488360 hasConceptScore W3201488360C86803240 @default.
- W3201488360 hasFunder F4320321001 @default.
- W3201488360 hasFunder F4320321881 @default.
- W3201488360 hasLocation W32014883601 @default.
- W3201488360 hasOpenAccess W3201488360 @default.
- W3201488360 hasPrimaryLocation W32014883601 @default.
- W3201488360 hasRelatedWork W2007224427 @default.
- W3201488360 hasRelatedWork W2023578832 @default.
- W3201488360 hasRelatedWork W2047423635 @default.
- W3201488360 hasRelatedWork W2052356940 @default.
- W3201488360 hasRelatedWork W2078932748 @default.
- W3201488360 hasRelatedWork W2295026479 @default.
- W3201488360 hasRelatedWork W2385614099 @default.
- W3201488360 hasRelatedWork W2982143337 @default.
- W3201488360 hasRelatedWork W3123919776 @default.
- W3201488360 hasRelatedWork W88728093 @default.
- W3201488360 hasVolume "403" @default.
- W3201488360 isParatext "false" @default.
- W3201488360 isRetracted "false" @default.
- W3201488360 magId "3201488360" @default.
- W3201488360 workType "article" @default.