Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201490693> ?p ?o ?g. }
- W3201490693 endingPage "80" @default.
- W3201490693 startingPage "66" @default.
- W3201490693 abstract "Electroencephalography (EEG) has become a widely used non-invasive measurement method for brain-computer interfaces (BCI). Hybrid BCI (hBCI) additionally incorporate other physiological indicators, also called bio-signals, in order to improve the decryption of brain signals evaluating a variety of different sensor data. Although significant progress has been made in the field of BCI, the correlation of data from different sensors as well as the possible redundancy of certain sensors have been less frequently studied. Based on deep learning our concept presents a theoretical approach to potentially replace one sensor with the measurements of others. Hence, a costly or difficult to sensor measurement could be left out of a setup completely without losing its functionality. In this context, we additionally propose a conceptual framework which facilitates and improves the generation of scientifically significant data through their collection within a corresponding VR application and set-up. The evaluation of these collected sensor data, which is described in five consecutive steps, is to cluster the data of one sensor and to classify the data from other sensors into these clusters. Afterwards, the sensor data in each cluster are analysed for patterns. Through the predictive data analysis of existing sensors, the required number of sensors can be reduced. This allows valid statements about the output of the original sensor with no need to use it effectively. An artificial intelligence (AI) based EEG emulation, derived from other directly related bio-signals, could therefore potentially replace EEG measurements which indirectly enables the use of BCI in situations where it was previously not possible. Future work might clarify relevant questions concerning the realisation of the concept and how it could be further developed." @default.
- W3201490693 created "2021-09-27" @default.
- W3201490693 creator A5001090279 @default.
- W3201490693 creator A5019990017 @default.
- W3201490693 creator A5042382396 @default.
- W3201490693 creator A5055672826 @default.
- W3201490693 creator A5081186672 @default.
- W3201490693 creator A5088609243 @default.
- W3201490693 date "2021-01-01" @default.
- W3201490693 modified "2023-09-24" @default.
- W3201490693 title "Replacing EEG Sensors by AI Based Emulation" @default.
- W3201490693 cites W1482424785 @default.
- W3201490693 cites W1519366346 @default.
- W3201490693 cites W1674182651 @default.
- W3201490693 cites W1876878732 @default.
- W3201490693 cites W192347854 @default.
- W3201490693 cites W2044251627 @default.
- W3201490693 cites W2070567559 @default.
- W3201490693 cites W2087704839 @default.
- W3201490693 cites W2100483618 @default.
- W3201490693 cites W2103634870 @default.
- W3201490693 cites W2111602941 @default.
- W3201490693 cites W2117151438 @default.
- W3201490693 cites W2128909182 @default.
- W3201490693 cites W2423797313 @default.
- W3201490693 cites W2460120636 @default.
- W3201490693 cites W2493502717 @default.
- W3201490693 cites W2617151543 @default.
- W3201490693 cites W2626218520 @default.
- W3201490693 cites W2749002349 @default.
- W3201490693 cites W2808649502 @default.
- W3201490693 cites W2889082578 @default.
- W3201490693 cites W2890679134 @default.
- W3201490693 cites W2898242330 @default.
- W3201490693 cites W2900802277 @default.
- W3201490693 cites W2936022330 @default.
- W3201490693 cites W2967261438 @default.
- W3201490693 cites W2981001215 @default.
- W3201490693 cites W2989840977 @default.
- W3201490693 cites W2991511576 @default.
- W3201490693 cites W3084230554 @default.
- W3201490693 cites W3102003537 @default.
- W3201490693 cites W4251591997 @default.
- W3201490693 cites W4253453051 @default.
- W3201490693 doi "https://doi.org/10.1007/978-3-030-87595-4_6" @default.
- W3201490693 hasPublicationYear "2021" @default.
- W3201490693 type Work @default.
- W3201490693 sameAs 3201490693 @default.
- W3201490693 citedByCount "1" @default.
- W3201490693 countsByYear W32014906932022 @default.
- W3201490693 crossrefType "book-chapter" @default.
- W3201490693 hasAuthorship W3201490693A5001090279 @default.
- W3201490693 hasAuthorship W3201490693A5019990017 @default.
- W3201490693 hasAuthorship W3201490693A5042382396 @default.
- W3201490693 hasAuthorship W3201490693A5055672826 @default.
- W3201490693 hasAuthorship W3201490693A5081186672 @default.
- W3201490693 hasAuthorship W3201490693A5088609243 @default.
- W3201490693 hasConcept C111919701 @default.
- W3201490693 hasConcept C118552586 @default.
- W3201490693 hasConcept C119857082 @default.
- W3201490693 hasConcept C124101348 @default.
- W3201490693 hasConcept C149810388 @default.
- W3201490693 hasConcept C151730666 @default.
- W3201490693 hasConcept C152124472 @default.
- W3201490693 hasConcept C153180895 @default.
- W3201490693 hasConcept C154945302 @default.
- W3201490693 hasConcept C15744967 @default.
- W3201490693 hasConcept C162324750 @default.
- W3201490693 hasConcept C173201364 @default.
- W3201490693 hasConcept C202444582 @default.
- W3201490693 hasConcept C2779343474 @default.
- W3201490693 hasConcept C33923547 @default.
- W3201490693 hasConcept C41008148 @default.
- W3201490693 hasConcept C50522688 @default.
- W3201490693 hasConcept C522805319 @default.
- W3201490693 hasConcept C86803240 @default.
- W3201490693 hasConcept C9652623 @default.
- W3201490693 hasConceptScore W3201490693C111919701 @default.
- W3201490693 hasConceptScore W3201490693C118552586 @default.
- W3201490693 hasConceptScore W3201490693C119857082 @default.
- W3201490693 hasConceptScore W3201490693C124101348 @default.
- W3201490693 hasConceptScore W3201490693C149810388 @default.
- W3201490693 hasConceptScore W3201490693C151730666 @default.
- W3201490693 hasConceptScore W3201490693C152124472 @default.
- W3201490693 hasConceptScore W3201490693C153180895 @default.
- W3201490693 hasConceptScore W3201490693C154945302 @default.
- W3201490693 hasConceptScore W3201490693C15744967 @default.
- W3201490693 hasConceptScore W3201490693C162324750 @default.
- W3201490693 hasConceptScore W3201490693C173201364 @default.
- W3201490693 hasConceptScore W3201490693C202444582 @default.
- W3201490693 hasConceptScore W3201490693C2779343474 @default.
- W3201490693 hasConceptScore W3201490693C33923547 @default.
- W3201490693 hasConceptScore W3201490693C41008148 @default.
- W3201490693 hasConceptScore W3201490693C50522688 @default.
- W3201490693 hasConceptScore W3201490693C522805319 @default.
- W3201490693 hasConceptScore W3201490693C86803240 @default.
- W3201490693 hasConceptScore W3201490693C9652623 @default.
- W3201490693 hasLocation W32014906931 @default.