Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201497966> ?p ?o ?g. }
- W3201497966 endingPage "100058" @default.
- W3201497966 startingPage "100058" @default.
- W3201497966 abstract "PurposeTo compare noncontact acoustic microtapping (AμT) OCT elastography (OCE) with destructive mechanical tests to confirm corneal elastic anisotropy.DesignEx vivo laboratory study with noncontact AμT-OCE followed by mechanical rheometry and extensometry.ParticipantsInflated cornea of whole-globe porcine eyes (n = 9).MethodsA noncontact AμT transducer was used to launch propagating mechanical waves in the cornea that were imaged with phase-sensitive OCT at physiologically relevant controlled pressures. Reconstruction of both Young’s modulus (E) and out-of-plane shear modulus (G) in the cornea from experimental data was performed using a nearly incompressible transversely isotropic (NITI) medium material model assuming spatial isotropy of corneal tensile properties. Corneal samples were excised and parallel plate rheometry was performed to measure shear modulus, G. Corneal samples were then subjected to strip extensometry to measure the Young’s modulus, E.Main Outcome MeasuresStrong corneal anisotropy was confirmed with both AμT-OCE and mechanical tests, with the Young’s (E) and shear (G) moduli differing by more than an order of magnitude. These results show that AμT-OCE can quantify both moduli simultaneously with a noncontact, noninvasive, clinically translatable technique.ResultsMean of the OCE measured moduli were E = 12 ± 5 MPa and G = 31 ± 11 kPa at 5 mmHg and E = 20 ± 9 MPa and G = 61 ± 29 kPa at 20 mmHg. Tensile testing yielded a mean Young’s modulus of 1 MPa – 20 MPa over a strain range of 1% to 7%. Shear storage and loss modulus (G′/G′′) measured with rheometry was approximately 82/13 ± 12/4 kPa at 0.2 Hz and 133/29 ± 16/3 kPa at 16 Hz (0.1% strain).ConclusionsThe cornea is confirmed to be a strongly anisotropic elastic material that cannot be characterized with a single elastic modulus. The NITI model is the simplest one that accounts for the cornea’s incompressibility and in-plane distribution of lamellae. AμT-OCE has been shown to be the only reported noncontact, noninvasive method to measure both elastic moduli. Submillimeter spatial resolution and near real-time operation can be achieved. Quantifying corneal elasticity in vivo will enable significant innovation in ophthalmology, helping to develop personalized biomechanical models of the eye that can predict response to ophthalmic interventions. To compare noncontact acoustic microtapping (AμT) OCT elastography (OCE) with destructive mechanical tests to confirm corneal elastic anisotropy. Ex vivo laboratory study with noncontact AμT-OCE followed by mechanical rheometry and extensometry. Inflated cornea of whole-globe porcine eyes (n = 9). A noncontact AμT transducer was used to launch propagating mechanical waves in the cornea that were imaged with phase-sensitive OCT at physiologically relevant controlled pressures. Reconstruction of both Young’s modulus (E) and out-of-plane shear modulus (G) in the cornea from experimental data was performed using a nearly incompressible transversely isotropic (NITI) medium material model assuming spatial isotropy of corneal tensile properties. Corneal samples were excised and parallel plate rheometry was performed to measure shear modulus, G. Corneal samples were then subjected to strip extensometry to measure the Young’s modulus, E. Strong corneal anisotropy was confirmed with both AμT-OCE and mechanical tests, with the Young’s (E) and shear (G) moduli differing by more than an order of magnitude. These results show that AμT-OCE can quantify both moduli simultaneously with a noncontact, noninvasive, clinically translatable technique. Mean of the OCE measured moduli were E = 12 ± 5 MPa and G = 31 ± 11 kPa at 5 mmHg and E = 20 ± 9 MPa and G = 61 ± 29 kPa at 20 mmHg. Tensile testing yielded a mean Young’s modulus of 1 MPa – 20 MPa over a strain range of 1% to 7%. Shear storage and loss modulus (G′/G′′) measured with rheometry was approximately 82/13 ± 12/4 kPa at 0.2 Hz and 133/29 ± 16/3 kPa at 16 Hz (0.1% strain). The cornea is confirmed to be a strongly anisotropic elastic material that cannot be characterized with a single elastic modulus. The NITI model is the simplest one that accounts for the cornea’s incompressibility and in-plane distribution of lamellae. AμT-OCE has been shown to be the only reported noncontact, noninvasive method to measure both elastic moduli. Submillimeter spatial resolution and near real-time operation can be achieved. Quantifying corneal elasticity in vivo will enable significant innovation in ophthalmology, helping to develop personalized biomechanical models of the eye that can predict response to ophthalmic interventions." @default.
- W3201497966 created "2021-09-27" @default.
- W3201497966 creator A5012388658 @default.
- W3201497966 creator A5026906414 @default.
- W3201497966 creator A5035229069 @default.
- W3201497966 creator A5054250260 @default.
- W3201497966 creator A5064797222 @default.
- W3201497966 creator A5065114207 @default.
- W3201497966 creator A5067822829 @default.
- W3201497966 date "2021-12-01" @default.
- W3201497966 modified "2023-10-16" @default.
- W3201497966 title "Delineating Corneal Elastic Anisotropy in a Porcine Model Using Noncontact OCT Elastography and Ex Vivo Mechanical Tests" @default.
- W3201497966 cites W1772246227 @default.
- W3201497966 cites W1954007937 @default.
- W3201497966 cites W1965921725 @default.
- W3201497966 cites W1969539309 @default.
- W3201497966 cites W1987196086 @default.
- W3201497966 cites W1988933621 @default.
- W3201497966 cites W1995344105 @default.
- W3201497966 cites W1996261121 @default.
- W3201497966 cites W2014618397 @default.
- W3201497966 cites W2017886142 @default.
- W3201497966 cites W2023622080 @default.
- W3201497966 cites W2026419440 @default.
- W3201497966 cites W2047210896 @default.
- W3201497966 cites W2055232534 @default.
- W3201497966 cites W2091583882 @default.
- W3201497966 cites W2091593985 @default.
- W3201497966 cites W2101176008 @default.
- W3201497966 cites W2104851028 @default.
- W3201497966 cites W2150023663 @default.
- W3201497966 cites W2316065928 @default.
- W3201497966 cites W2329702817 @default.
- W3201497966 cites W2342871233 @default.
- W3201497966 cites W2519106087 @default.
- W3201497966 cites W2540379889 @default.
- W3201497966 cites W2567462484 @default.
- W3201497966 cites W2778552376 @default.
- W3201497966 cites W2786816790 @default.
- W3201497966 cites W2947023205 @default.
- W3201497966 cites W3046262855 @default.
- W3201497966 cites W3085246586 @default.
- W3201497966 cites W3109086280 @default.
- W3201497966 cites W4245598823 @default.
- W3201497966 doi "https://doi.org/10.1016/j.xops.2021.100058" @default.
- W3201497966 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36246948" @default.
- W3201497966 hasPublicationYear "2021" @default.
- W3201497966 type Work @default.
- W3201497966 sameAs 3201497966 @default.
- W3201497966 citedByCount "9" @default.
- W3201497966 countsByYear W32014979662022 @default.
- W3201497966 countsByYear W32014979662023 @default.
- W3201497966 crossrefType "journal-article" @default.
- W3201497966 hasAuthorship W3201497966A5012388658 @default.
- W3201497966 hasAuthorship W3201497966A5026906414 @default.
- W3201497966 hasAuthorship W3201497966A5035229069 @default.
- W3201497966 hasAuthorship W3201497966A5054250260 @default.
- W3201497966 hasAuthorship W3201497966A5064797222 @default.
- W3201497966 hasAuthorship W3201497966A5065114207 @default.
- W3201497966 hasAuthorship W3201497966A5067822829 @default.
- W3201497966 hasBestOaLocation W32014979661 @default.
- W3201497966 hasConcept C101842124 @default.
- W3201497966 hasConcept C118487528 @default.
- W3201497966 hasConcept C120665830 @default.
- W3201497966 hasConcept C121332964 @default.
- W3201497966 hasConcept C126838900 @default.
- W3201497966 hasConcept C136229726 @default.
- W3201497966 hasConcept C143753070 @default.
- W3201497966 hasConcept C159985019 @default.
- W3201497966 hasConcept C184050105 @default.
- W3201497966 hasConcept C186541917 @default.
- W3201497966 hasConcept C191172559 @default.
- W3201497966 hasConcept C192562407 @default.
- W3201497966 hasConcept C193867417 @default.
- W3201497966 hasConcept C196029304 @default.
- W3201497966 hasConcept C2776882836 @default.
- W3201497966 hasConcept C2777690781 @default.
- W3201497966 hasConcept C41279357 @default.
- W3201497966 hasConcept C43486711 @default.
- W3201497966 hasConcept C71924100 @default.
- W3201497966 hasConcept C85725439 @default.
- W3201497966 hasConceptScore W3201497966C101842124 @default.
- W3201497966 hasConceptScore W3201497966C118487528 @default.
- W3201497966 hasConceptScore W3201497966C120665830 @default.
- W3201497966 hasConceptScore W3201497966C121332964 @default.
- W3201497966 hasConceptScore W3201497966C126838900 @default.
- W3201497966 hasConceptScore W3201497966C136229726 @default.
- W3201497966 hasConceptScore W3201497966C143753070 @default.
- W3201497966 hasConceptScore W3201497966C159985019 @default.
- W3201497966 hasConceptScore W3201497966C184050105 @default.
- W3201497966 hasConceptScore W3201497966C186541917 @default.
- W3201497966 hasConceptScore W3201497966C191172559 @default.
- W3201497966 hasConceptScore W3201497966C192562407 @default.
- W3201497966 hasConceptScore W3201497966C193867417 @default.
- W3201497966 hasConceptScore W3201497966C196029304 @default.
- W3201497966 hasConceptScore W3201497966C2776882836 @default.
- W3201497966 hasConceptScore W3201497966C2777690781 @default.
- W3201497966 hasConceptScore W3201497966C41279357 @default.