Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201504704> ?p ?o ?g. }
- W3201504704 abstract "Recent work has shown that monolingual masked language models learn to represent data-driven notions of language variation which can be used for domain-targeted training data selection. Dataset genre labels are already frequently available, yet remain largely unexplored in cross-lingual setups. We harness this genre metadata as a weak supervision signal for targeted data selection in zero-shot dependency parsing. Specifically, we project treebank-level genre information to the finer-grained sentence level, with the goal to amplify information implicitly stored in unsupervised contextualized representations. We demonstrate that genre is recoverable from multilingual contextual embeddings and that it provides an effective signal for training data selection in cross-lingual, zero-shot scenarios. For 12 low-resource language treebanks, six of which are test-only, our genre-specific methods significantly outperform competitive baselines as well as recent embedding-based methods for data selection. Moreover, genre-based data selection provides new state-of-the-art results for three of these target languages." @default.
- W3201504704 created "2021-09-27" @default.
- W3201504704 creator A5039811894 @default.
- W3201504704 creator A5083392159 @default.
- W3201504704 creator A5088832285 @default.
- W3201504704 date "2021-01-01" @default.
- W3201504704 modified "2023-10-01" @default.
- W3201504704 title "Genre as Weak Supervision for Cross-lingual Dependency Parsing" @default.
- W3201504704 cites W1550965316 @default.
- W3201504704 cites W2101234009 @default.
- W3201504704 cites W2142746600 @default.
- W3201504704 cites W2146888100 @default.
- W3201504704 cites W2151373442 @default.
- W3201504704 cites W2156354361 @default.
- W3201504704 cites W2170571488 @default.
- W3201504704 cites W2187089797 @default.
- W3201504704 cites W2250314407 @default.
- W3201504704 cites W2294143002 @default.
- W3201504704 cites W2612968675 @default.
- W3201504704 cites W2740935829 @default.
- W3201504704 cites W2768282280 @default.
- W3201504704 cites W2775491500 @default.
- W3201504704 cites W2784566685 @default.
- W3201504704 cites W2806067357 @default.
- W3201504704 cites W2886669599 @default.
- W3201504704 cites W2912569021 @default.
- W3201504704 cites W2912742782 @default.
- W3201504704 cites W2945125480 @default.
- W3201504704 cites W2963285772 @default.
- W3201504704 cites W2963341956 @default.
- W3201504704 cites W2963571341 @default.
- W3201504704 cites W2964125718 @default.
- W3201504704 cites W2970365965 @default.
- W3201504704 cites W2970529259 @default.
- W3201504704 cites W2995380724 @default.
- W3201504704 cites W2996400930 @default.
- W3201504704 cites W2996493817 @default.
- W3201504704 cites W2996646550 @default.
- W3201504704 cites W3018647120 @default.
- W3201504704 cites W3032162595 @default.
- W3201504704 cites W3034238904 @default.
- W3201504704 cites W3034640977 @default.
- W3201504704 cites W3035390927 @default.
- W3201504704 cites W3047398590 @default.
- W3201504704 cites W3087944587 @default.
- W3201504704 cites W3090789254 @default.
- W3201504704 cites W3098824823 @default.
- W3201504704 cites W3098903812 @default.
- W3201504704 cites W3100198908 @default.
- W3201504704 cites W3105421296 @default.
- W3201504704 cites W3109715069 @default.
- W3201504704 cites W3117603203 @default.
- W3201504704 cites W3118872778 @default.
- W3201504704 cites W3155312918 @default.
- W3201504704 doi "https://doi.org/10.18653/v1/2021.emnlp-main.393" @default.
- W3201504704 hasPublicationYear "2021" @default.
- W3201504704 type Work @default.
- W3201504704 sameAs 3201504704 @default.
- W3201504704 citedByCount "1" @default.
- W3201504704 countsByYear W32015047042023 @default.
- W3201504704 crossrefType "proceedings-article" @default.
- W3201504704 hasAuthorship W3201504704A5039811894 @default.
- W3201504704 hasAuthorship W3201504704A5083392159 @default.
- W3201504704 hasAuthorship W3201504704A5088832285 @default.
- W3201504704 hasBestOaLocation W32015047041 @default.
- W3201504704 hasConcept C121332964 @default.
- W3201504704 hasConcept C136764020 @default.
- W3201504704 hasConcept C137293760 @default.
- W3201504704 hasConcept C154945302 @default.
- W3201504704 hasConcept C164883195 @default.
- W3201504704 hasConcept C186644900 @default.
- W3201504704 hasConcept C19768560 @default.
- W3201504704 hasConcept C204321447 @default.
- W3201504704 hasConcept C206134035 @default.
- W3201504704 hasConcept C2777530160 @default.
- W3201504704 hasConcept C2778334786 @default.
- W3201504704 hasConcept C41008148 @default.
- W3201504704 hasConcept C41608201 @default.
- W3201504704 hasConcept C44870925 @default.
- W3201504704 hasConcept C81917197 @default.
- W3201504704 hasConcept C93518851 @default.
- W3201504704 hasConceptScore W3201504704C121332964 @default.
- W3201504704 hasConceptScore W3201504704C136764020 @default.
- W3201504704 hasConceptScore W3201504704C137293760 @default.
- W3201504704 hasConceptScore W3201504704C154945302 @default.
- W3201504704 hasConceptScore W3201504704C164883195 @default.
- W3201504704 hasConceptScore W3201504704C186644900 @default.
- W3201504704 hasConceptScore W3201504704C19768560 @default.
- W3201504704 hasConceptScore W3201504704C204321447 @default.
- W3201504704 hasConceptScore W3201504704C206134035 @default.
- W3201504704 hasConceptScore W3201504704C2777530160 @default.
- W3201504704 hasConceptScore W3201504704C2778334786 @default.
- W3201504704 hasConceptScore W3201504704C41008148 @default.
- W3201504704 hasConceptScore W3201504704C41608201 @default.
- W3201504704 hasConceptScore W3201504704C44870925 @default.
- W3201504704 hasConceptScore W3201504704C81917197 @default.
- W3201504704 hasConceptScore W3201504704C93518851 @default.
- W3201504704 hasLocation W32015047041 @default.
- W3201504704 hasLocation W32015047042 @default.
- W3201504704 hasOpenAccess W3201504704 @default.