Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201512974> ?p ?o ?g. }
- W3201512974 endingPage "57" @default.
- W3201512974 startingPage "50" @default.
- W3201512974 abstract "PurposeTo create and investigate a novel, clinical decision-support system using machine learning (ML).Methods and MaterialsThe ML model was developed based on 79 radiotherapy plans of brain tumor patients that were prescribed a total dose of 60 Gy delivered with volumetric-modulated arc therapy (VMAT). Structures considered for analysis included planning target volume (PTV), brainstem, cochleae, and optic chiasm. The model aimed to classify the target variable that included class-0 corresponding to plans for which the PTV treatment planning objective was met and class-1 that was associated with plans for which the PTV objective was not met due to the priority trade-off to meet one or more organs-at-risk constraints. Several models were evaluated using double-nested cross-validation and an area-under-the-curve (AUC) metric, with the highest performing one selected for further investigation. The model predictions were explained with Shapely additive explanation (SHAP) interaction values.ResultsThe highest-performing model was Logistic Regression achieving an accuracy of 93.8 ± 4.1% and AUC of 0.98 ± 0.02 on the testing data. The SHAP analysis indicated that the ΔD99% metric for PTV had the greatest influence on the model predictions. The least important feature was ΔDMAX for the left and right cochleae.ConclusionsThe trained model achieved satisfactory accuracy and can be used by medical physicists in a data-driven quality assurance program as well as by radiation oncologists to support their decision-making process in terms of treatment plan approval and potential plan modifications. Model explanation analysis showed that the model relies on clinically valid logic when making predictions." @default.
- W3201512974 created "2021-09-27" @default.
- W3201512974 creator A5023977131 @default.
- W3201512974 creator A5035982178 @default.
- W3201512974 creator A5041380193 @default.
- W3201512974 creator A5067224482 @default.
- W3201512974 creator A5070861368 @default.
- W3201512974 creator A5078035733 @default.
- W3201512974 date "2021-11-01" @default.
- W3201512974 modified "2023-10-16" @default.
- W3201512974 title "Machine learning for dose-volume histogram based clinical decision-making support system in radiation therapy plans for brain tumors" @default.
- W3201512974 cites W1980885373 @default.
- W3201512974 cites W2013215584 @default.
- W3201512974 cites W2096451472 @default.
- W3201512974 cites W2141007997 @default.
- W3201512974 cites W2154290668 @default.
- W3201512974 cites W2295556464 @default.
- W3201512974 cites W2472443435 @default.
- W3201512974 cites W2505006384 @default.
- W3201512974 cites W2515868005 @default.
- W3201512974 cites W2523522651 @default.
- W3201512974 cites W2530107623 @default.
- W3201512974 cites W2570778310 @default.
- W3201512974 cites W2603411028 @default.
- W3201512974 cites W2617702657 @default.
- W3201512974 cites W2617953320 @default.
- W3201512974 cites W2792278614 @default.
- W3201512974 cites W2802444330 @default.
- W3201512974 cites W2804079537 @default.
- W3201512974 cites W2834959070 @default.
- W3201512974 cites W2886998953 @default.
- W3201512974 cites W2888460864 @default.
- W3201512974 cites W2889201185 @default.
- W3201512974 cites W2913769966 @default.
- W3201512974 cites W2944474230 @default.
- W3201512974 cites W2962636058 @default.
- W3201512974 cites W2963847595 @default.
- W3201512974 cites W2972150145 @default.
- W3201512974 cites W2981001892 @default.
- W3201512974 cites W2984590210 @default.
- W3201512974 cites W2988898359 @default.
- W3201512974 cites W2993375984 @default.
- W3201512974 cites W2996103775 @default.
- W3201512974 cites W2999010647 @default.
- W3201512974 cites W2999615587 @default.
- W3201512974 cites W2999967864 @default.
- W3201512974 cites W3001351722 @default.
- W3201512974 cites W3028584538 @default.
- W3201512974 cites W3029316783 @default.
- W3201512974 cites W3035265178 @default.
- W3201512974 cites W3038148999 @default.
- W3201512974 cites W3045359972 @default.
- W3201512974 cites W3087500013 @default.
- W3201512974 cites W3090401247 @default.
- W3201512974 cites W4246859390 @default.
- W3201512974 cites W4248539070 @default.
- W3201512974 cites W4376601369 @default.
- W3201512974 doi "https://doi.org/10.1016/j.ctro.2021.09.001" @default.
- W3201512974 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8487981" @default.
- W3201512974 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34632117" @default.
- W3201512974 hasPublicationYear "2021" @default.
- W3201512974 type Work @default.
- W3201512974 sameAs 3201512974 @default.
- W3201512974 citedByCount "3" @default.
- W3201512974 countsByYear W32015129742022 @default.
- W3201512974 crossrefType "journal-article" @default.
- W3201512974 hasAuthorship W3201512974A5023977131 @default.
- W3201512974 hasAuthorship W3201512974A5035982178 @default.
- W3201512974 hasAuthorship W3201512974A5041380193 @default.
- W3201512974 hasAuthorship W3201512974A5067224482 @default.
- W3201512974 hasAuthorship W3201512974A5070861368 @default.
- W3201512974 hasAuthorship W3201512974A5078035733 @default.
- W3201512974 hasBestOaLocation W32015129742 @default.
- W3201512974 hasConcept C106436119 @default.
- W3201512974 hasConcept C118487528 @default.
- W3201512974 hasConcept C119857082 @default.
- W3201512974 hasConcept C126838900 @default.
- W3201512974 hasConcept C142724271 @default.
- W3201512974 hasConcept C151956035 @default.
- W3201512974 hasConcept C154945302 @default.
- W3201512974 hasConcept C162324750 @default.
- W3201512974 hasConcept C176217482 @default.
- W3201512974 hasConcept C19527891 @default.
- W3201512974 hasConcept C201645570 @default.
- W3201512974 hasConcept C21547014 @default.
- W3201512974 hasConcept C2778618615 @default.
- W3201512974 hasConcept C2779797997 @default.
- W3201512974 hasConcept C2780837183 @default.
- W3201512974 hasConcept C2780920918 @default.
- W3201512974 hasConcept C2989005 @default.
- W3201512974 hasConcept C41008148 @default.
- W3201512974 hasConcept C509974204 @default.
- W3201512974 hasConcept C71924100 @default.
- W3201512974 hasConceptScore W3201512974C106436119 @default.
- W3201512974 hasConceptScore W3201512974C118487528 @default.
- W3201512974 hasConceptScore W3201512974C119857082 @default.
- W3201512974 hasConceptScore W3201512974C126838900 @default.
- W3201512974 hasConceptScore W3201512974C142724271 @default.