Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201518537> ?p ?o ?g. }
- W3201518537 abstract "The rapid development of artificial intelligence technology has improved the capability of automatic breast cancer diagnosis, compared to traditional machine learning methods. Convolutional Neural Network (CNN) can automatically select high efficiency features, which helps to improve the level of computer-aided diagnosis (CAD). It can improve the performance of distinguishing benign and malignant breast ultrasound (BUS) tumor images, making rapid breast tumor screening possible.The classification model was evaluated with a different dataset of 100 BUS tumor images (50 benign cases and 50 malignant cases), which was not used in network training. Evaluation indicators include accuracy, sensitivity, specificity, and area under curve (AUC) value. The results in the Fus2Net model had an accuracy of 92%, the sensitivity reached 95.65%, the specificity reached 88.89%, and the AUC value reached 0.97 for classifying BUS tumor images.The experiment compared the existing CNN-categorized architecture, and the Fus2Net architecture we customed has more advantages in a comprehensive performance. The obtained results demonstrated that the Fus2Net classification method we proposed can better assist radiologists in the diagnosis of benign and malignant BUS tumor images.The existing public datasets are small and the amount of data suffer from the balance issue. In this paper, we provide a relatively larger dataset with a total of 1052 ultrasound images, including 696 benign images and 356 malignant images, which were collected from a local hospital. We proposed a novel CNN named Fus2Net for the benign and malignant classification of BUS tumor images and it contains two self-designed feature extraction modules. To evaluate how the classifier generalizes on the experimental dataset, we employed the training set (646 benign cases and 306 malignant cases) for tenfold cross-validation. Meanwhile, to solve the balance of the dataset, the training data were augmented before being fed into the Fus2Net. In the experiment, we used hyperparameter fine-tuning and regularization technology to make the Fus2Net convergence." @default.
- W3201518537 created "2021-09-27" @default.
- W3201518537 creator A5007211815 @default.
- W3201518537 creator A5014068004 @default.
- W3201518537 creator A5023339675 @default.
- W3201518537 creator A5060377398 @default.
- W3201518537 creator A5069485824 @default.
- W3201518537 creator A5069796893 @default.
- W3201518537 creator A5072470001 @default.
- W3201518537 date "2021-11-18" @default.
- W3201518537 modified "2023-10-04" @default.
- W3201518537 title "Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images" @default.
- W3201518537 cites W2059900648 @default.
- W3201518537 cites W2097117768 @default.
- W3201518537 cites W2183341477 @default.
- W3201518537 cites W2588890839 @default.
- W3201518537 cites W2618530766 @default.
- W3201518537 cites W2727347885 @default.
- W3201518537 cites W2740028789 @default.
- W3201518537 cites W2744692634 @default.
- W3201518537 cites W2766123424 @default.
- W3201518537 cites W2768950724 @default.
- W3201518537 cites W2871338759 @default.
- W3201518537 cites W2894202513 @default.
- W3201518537 cites W2906785117 @default.
- W3201518537 cites W2939142770 @default.
- W3201518537 cites W2949736877 @default.
- W3201518537 cites W2953914369 @default.
- W3201518537 cites W2954996726 @default.
- W3201518537 cites W2964185543 @default.
- W3201518537 cites W2964350391 @default.
- W3201518537 cites W2996237850 @default.
- W3201518537 cites W3005546201 @default.
- W3201518537 cites W3106753828 @default.
- W3201518537 cites W3115895396 @default.
- W3201518537 cites W4237988928 @default.
- W3201518537 cites W4285775397 @default.
- W3201518537 cites W2945240700 @default.
- W3201518537 doi "https://doi.org/10.1186/s12938-021-00950-z" @default.
- W3201518537 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8600702" @default.
- W3201518537 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34794443" @default.
- W3201518537 hasPublicationYear "2021" @default.
- W3201518537 type Work @default.
- W3201518537 sameAs 3201518537 @default.
- W3201518537 citedByCount "10" @default.
- W3201518537 countsByYear W32015185372022 @default.
- W3201518537 countsByYear W32015185372023 @default.
- W3201518537 crossrefType "journal-article" @default.
- W3201518537 hasAuthorship W3201518537A5007211815 @default.
- W3201518537 hasAuthorship W3201518537A5014068004 @default.
- W3201518537 hasAuthorship W3201518537A5023339675 @default.
- W3201518537 hasAuthorship W3201518537A5060377398 @default.
- W3201518537 hasAuthorship W3201518537A5069485824 @default.
- W3201518537 hasAuthorship W3201518537A5069796893 @default.
- W3201518537 hasAuthorship W3201518537A5072470001 @default.
- W3201518537 hasBestOaLocation W32015185371 @default.
- W3201518537 hasConcept C108583219 @default.
- W3201518537 hasConcept C119857082 @default.
- W3201518537 hasConcept C121608353 @default.
- W3201518537 hasConcept C126322002 @default.
- W3201518537 hasConcept C127413603 @default.
- W3201518537 hasConcept C153180895 @default.
- W3201518537 hasConcept C154945302 @default.
- W3201518537 hasConcept C194789388 @default.
- W3201518537 hasConcept C199639397 @default.
- W3201518537 hasConcept C2777423100 @default.
- W3201518537 hasConcept C2779549770 @default.
- W3201518537 hasConcept C2780472235 @default.
- W3201518537 hasConcept C41008148 @default.
- W3201518537 hasConcept C50644808 @default.
- W3201518537 hasConcept C52622490 @default.
- W3201518537 hasConcept C530470458 @default.
- W3201518537 hasConcept C71924100 @default.
- W3201518537 hasConcept C81363708 @default.
- W3201518537 hasConceptScore W3201518537C108583219 @default.
- W3201518537 hasConceptScore W3201518537C119857082 @default.
- W3201518537 hasConceptScore W3201518537C121608353 @default.
- W3201518537 hasConceptScore W3201518537C126322002 @default.
- W3201518537 hasConceptScore W3201518537C127413603 @default.
- W3201518537 hasConceptScore W3201518537C153180895 @default.
- W3201518537 hasConceptScore W3201518537C154945302 @default.
- W3201518537 hasConceptScore W3201518537C194789388 @default.
- W3201518537 hasConceptScore W3201518537C199639397 @default.
- W3201518537 hasConceptScore W3201518537C2777423100 @default.
- W3201518537 hasConceptScore W3201518537C2779549770 @default.
- W3201518537 hasConceptScore W3201518537C2780472235 @default.
- W3201518537 hasConceptScore W3201518537C41008148 @default.
- W3201518537 hasConceptScore W3201518537C50644808 @default.
- W3201518537 hasConceptScore W3201518537C52622490 @default.
- W3201518537 hasConceptScore W3201518537C530470458 @default.
- W3201518537 hasConceptScore W3201518537C71924100 @default.
- W3201518537 hasConceptScore W3201518537C81363708 @default.
- W3201518537 hasIssue "1" @default.
- W3201518537 hasLocation W32015185371 @default.
- W3201518537 hasLocation W32015185372 @default.
- W3201518537 hasLocation W32015185373 @default.
- W3201518537 hasLocation W32015185374 @default.
- W3201518537 hasLocation W32015185375 @default.
- W3201518537 hasOpenAccess W3201518537 @default.
- W3201518537 hasPrimaryLocation W32015185371 @default.