Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201520726> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3201520726 abstract "Remi FlamaryLaboratoire Lagrange, Observatoire de la Cote d’Azur, Universite de NiceSophia-AntipolisAlain RakotomamonjyLITIS, Universite de RouenGilles GassoLITIS, INSA de Rouen5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045.2 Similarity Based Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065.2.1 Multi-Task Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . 1065.2.2 Similarity-Based Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 1075.2.3 Solving the Multi-Task Learning Problem . . . . . . . . . . . . . . 1085.3 Non-Convex Proximal Algorithm for Learning Similarities . . . . . 1105.3.1 Bilevel Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . 1105.3.2 Gradient Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125.3.3 Constraints on P and λt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135.3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155.4.1 Toy Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165.4.2 Real-World Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195.4.2.1 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . 1195.4.2.2 School Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205.4.2.3 Brain Computer Interface Dataset . . . . . . . . 1215.4.2.4 OCR Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127VectorThis chapter addresses the problem of learning constrained task relatedness in a graph-regularized multi-task learning framework. In such a context,the weighted adjacency matrix of a graph encodes the knowledge on tasksimilarities and each entry of this matrix can be interpreted as a hyperparameter of the learning problem. This task relation matrix is learned via abilevel optimization procedure where the outer level optimizes a proxy of thegeneralization errors over all tasks with respect to the similarity matrix andthe inner level estimates the parameters of the tasks knowing this similaritymatrix. Constraints on task similarities are also taken into account in thisoptimization framework and they allow the task similarity matrix to be moreinterpretable, for instance, by imposing a sparse similarity matrix. Since theglobal problem is non-convex, we propose a non-convex proximal algorithmthat provably converges to a stationary point of the problem. Empirical evidence illustrates the approach is competitive compared to existing methodsthat also learn task relation and exhibits an enhanced interpretability of thelearned task similarity matrix." @default.
- W3201520726 created "2021-09-27" @default.
- W3201520726 creator A5003774172 @default.
- W3201520726 creator A5031137438 @default.
- W3201520726 creator A5050148395 @default.
- W3201520726 date "2014-10-23" @default.
- W3201520726 modified "2023-10-16" @default.
- W3201520726 title "Learning Constrained Task Similarities in Graph-Regularized Multi-Task Learning" @default.
- W3201520726 cites W2065180801 @default.
- W3201520726 doi "https://doi.org/10.1201/b17558-8" @default.
- W3201520726 hasPublicationYear "2014" @default.
- W3201520726 type Work @default.
- W3201520726 sameAs 3201520726 @default.
- W3201520726 citedByCount "2" @default.
- W3201520726 countsByYear W32015207262018 @default.
- W3201520726 countsByYear W32015207262019 @default.
- W3201520726 crossrefType "book-chapter" @default.
- W3201520726 hasAuthorship W3201520726A5003774172 @default.
- W3201520726 hasAuthorship W3201520726A5031137438 @default.
- W3201520726 hasAuthorship W3201520726A5050148395 @default.
- W3201520726 hasConcept C103278499 @default.
- W3201520726 hasConcept C115961682 @default.
- W3201520726 hasConcept C119857082 @default.
- W3201520726 hasConcept C132525143 @default.
- W3201520726 hasConcept C151730666 @default.
- W3201520726 hasConcept C153180895 @default.
- W3201520726 hasConcept C154945302 @default.
- W3201520726 hasConcept C162324750 @default.
- W3201520726 hasConcept C187736073 @default.
- W3201520726 hasConcept C2779343474 @default.
- W3201520726 hasConcept C2780451532 @default.
- W3201520726 hasConcept C28006648 @default.
- W3201520726 hasConcept C41008148 @default.
- W3201520726 hasConcept C80444323 @default.
- W3201520726 hasConcept C86803240 @default.
- W3201520726 hasConceptScore W3201520726C103278499 @default.
- W3201520726 hasConceptScore W3201520726C115961682 @default.
- W3201520726 hasConceptScore W3201520726C119857082 @default.
- W3201520726 hasConceptScore W3201520726C132525143 @default.
- W3201520726 hasConceptScore W3201520726C151730666 @default.
- W3201520726 hasConceptScore W3201520726C153180895 @default.
- W3201520726 hasConceptScore W3201520726C154945302 @default.
- W3201520726 hasConceptScore W3201520726C162324750 @default.
- W3201520726 hasConceptScore W3201520726C187736073 @default.
- W3201520726 hasConceptScore W3201520726C2779343474 @default.
- W3201520726 hasConceptScore W3201520726C2780451532 @default.
- W3201520726 hasConceptScore W3201520726C28006648 @default.
- W3201520726 hasConceptScore W3201520726C41008148 @default.
- W3201520726 hasConceptScore W3201520726C80444323 @default.
- W3201520726 hasConceptScore W3201520726C86803240 @default.
- W3201520726 hasLocation W32015207261 @default.
- W3201520726 hasOpenAccess W3201520726 @default.
- W3201520726 hasPrimaryLocation W32015207261 @default.
- W3201520726 hasRelatedWork W1939941161 @default.
- W3201520726 hasRelatedWork W1984541063 @default.
- W3201520726 hasRelatedWork W1984608801 @default.
- W3201520726 hasRelatedWork W2001831401 @default.
- W3201520726 hasRelatedWork W2104261769 @default.
- W3201520726 hasRelatedWork W2134982367 @default.
- W3201520726 hasRelatedWork W2181252817 @default.
- W3201520726 hasRelatedWork W2209824876 @default.
- W3201520726 hasRelatedWork W2463008967 @default.
- W3201520726 hasRelatedWork W2541573029 @default.
- W3201520726 hasRelatedWork W2583201723 @default.
- W3201520726 hasRelatedWork W2604418621 @default.
- W3201520726 hasRelatedWork W3034867186 @default.
- W3201520726 hasRelatedWork W3086346689 @default.
- W3201520726 hasRelatedWork W3094543942 @default.
- W3201520726 hasRelatedWork W3096352126 @default.
- W3201520726 hasRelatedWork W3100625157 @default.
- W3201520726 hasRelatedWork W3134465596 @default.
- W3201520726 hasRelatedWork W3201347008 @default.
- W3201520726 hasRelatedWork W344512287 @default.
- W3201520726 isParatext "false" @default.
- W3201520726 isRetracted "false" @default.
- W3201520726 magId "3201520726" @default.
- W3201520726 workType "book-chapter" @default.