Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201524182> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3201524182 endingPage "577" @default.
- W3201524182 startingPage "570" @default.
- W3201524182 abstract "AbstractAccurate medical image segmentation is crucial for diagnosis and analysis. However, the models without calibrated uncertainty estimates might lead to errors in downstream analysis and exhibit low levels of robustness. Estimating the uncertainty in the measurement is vital to making definite, informed conclusions. Especially, it is difficult to make accurate predictions on ambiguous areas and focus boundaries for both models and radiologists, even harder to reach a consensus with multiple annotations. In this work, the uncertainty under these areas is studied, which introduces significant information with anatomical structure and is as important as segmentation performance. We exploit the medical image segmentation uncertainty quantification by measuring segmentation performance with multiple annotations in a supervised learning manner and propose a U-Net based architecture with multiple decoders, where the image representation is encoded with the same encoder, and segmentation referring to each annotation is estimated with multiple decoders. Nevertheless, a cross loss function is proposed for bridging the gap between different branches. The proposed architecture is trained in an end-to-end manner and able to improve predictive uncertainty estimates. The model achieves comparable performance with fewer parameters to the integrated training model that ranked the runner-up in the MICCAI-QUBIQ 2020 challenge.KeywordsUncertainty qualificationMedical images segmentationMultiple annotations" @default.
- W3201524182 created "2021-09-27" @default.
- W3201524182 creator A5003533736 @default.
- W3201524182 creator A5010684363 @default.
- W3201524182 creator A5018722248 @default.
- W3201524182 creator A5029228576 @default.
- W3201524182 creator A5033665900 @default.
- W3201524182 creator A5063352703 @default.
- W3201524182 date "2022-01-01" @default.
- W3201524182 modified "2023-09-26" @default.
- W3201524182 title "Uncertainty Quantification in Medical Image Segmentation with Multi-decoder U-Net" @default.
- W3201524182 cites W1901129140 @default.
- W3201524182 cites W2603777577 @default.
- W3201524182 cites W2979455868 @default.
- W3201524182 cites W2980246484 @default.
- W3201524182 cites W2986556279 @default.
- W3201524182 cites W3035711539 @default.
- W3201524182 doi "https://doi.org/10.1007/978-3-031-09002-8_50" @default.
- W3201524182 hasPublicationYear "2022" @default.
- W3201524182 type Work @default.
- W3201524182 sameAs 3201524182 @default.
- W3201524182 citedByCount "0" @default.
- W3201524182 crossrefType "book-chapter" @default.
- W3201524182 hasAuthorship W3201524182A5003533736 @default.
- W3201524182 hasAuthorship W3201524182A5010684363 @default.
- W3201524182 hasAuthorship W3201524182A5018722248 @default.
- W3201524182 hasAuthorship W3201524182A5029228576 @default.
- W3201524182 hasAuthorship W3201524182A5033665900 @default.
- W3201524182 hasAuthorship W3201524182A5063352703 @default.
- W3201524182 hasBestOaLocation W32015241822 @default.
- W3201524182 hasConcept C104317684 @default.
- W3201524182 hasConcept C111919701 @default.
- W3201524182 hasConcept C118505674 @default.
- W3201524182 hasConcept C119857082 @default.
- W3201524182 hasConcept C124101348 @default.
- W3201524182 hasConcept C124504099 @default.
- W3201524182 hasConcept C153180895 @default.
- W3201524182 hasConcept C154945302 @default.
- W3201524182 hasConcept C17744445 @default.
- W3201524182 hasConcept C185592680 @default.
- W3201524182 hasConcept C199539241 @default.
- W3201524182 hasConcept C2776321320 @default.
- W3201524182 hasConcept C2776359362 @default.
- W3201524182 hasConcept C41008148 @default.
- W3201524182 hasConcept C55493867 @default.
- W3201524182 hasConcept C63479239 @default.
- W3201524182 hasConcept C89600930 @default.
- W3201524182 hasConcept C94625758 @default.
- W3201524182 hasConceptScore W3201524182C104317684 @default.
- W3201524182 hasConceptScore W3201524182C111919701 @default.
- W3201524182 hasConceptScore W3201524182C118505674 @default.
- W3201524182 hasConceptScore W3201524182C119857082 @default.
- W3201524182 hasConceptScore W3201524182C124101348 @default.
- W3201524182 hasConceptScore W3201524182C124504099 @default.
- W3201524182 hasConceptScore W3201524182C153180895 @default.
- W3201524182 hasConceptScore W3201524182C154945302 @default.
- W3201524182 hasConceptScore W3201524182C17744445 @default.
- W3201524182 hasConceptScore W3201524182C185592680 @default.
- W3201524182 hasConceptScore W3201524182C199539241 @default.
- W3201524182 hasConceptScore W3201524182C2776321320 @default.
- W3201524182 hasConceptScore W3201524182C2776359362 @default.
- W3201524182 hasConceptScore W3201524182C41008148 @default.
- W3201524182 hasConceptScore W3201524182C55493867 @default.
- W3201524182 hasConceptScore W3201524182C63479239 @default.
- W3201524182 hasConceptScore W3201524182C89600930 @default.
- W3201524182 hasConceptScore W3201524182C94625758 @default.
- W3201524182 hasLocation W32015241821 @default.
- W3201524182 hasLocation W32015241822 @default.
- W3201524182 hasOpenAccess W3201524182 @default.
- W3201524182 hasPrimaryLocation W32015241821 @default.
- W3201524182 hasRelatedWork W1974884835 @default.
- W3201524182 hasRelatedWork W2152591411 @default.
- W3201524182 hasRelatedWork W2510758617 @default.
- W3201524182 hasRelatedWork W2551390060 @default.
- W3201524182 hasRelatedWork W2897195263 @default.
- W3201524182 hasRelatedWork W2903115243 @default.
- W3201524182 hasRelatedWork W2948522034 @default.
- W3201524182 hasRelatedWork W3127804355 @default.
- W3201524182 hasRelatedWork W4206076898 @default.
- W3201524182 hasRelatedWork W4361265312 @default.
- W3201524182 isParatext "false" @default.
- W3201524182 isRetracted "false" @default.
- W3201524182 magId "3201524182" @default.
- W3201524182 workType "book-chapter" @default.