Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201524732> ?p ?o ?g. }
- W3201524732 endingPage "60" @default.
- W3201524732 startingPage "48" @default.
- W3201524732 abstract "Being able to recommend links between users in online social networks is important for users to connect with like-minded individuals as well as for the platforms themselves and third parties leveraging social media information to grow their business. Predictions are typically based on unsupervised or supervised learning, often leveraging simple yet effective graph topological information, such as the number of common neighbors. However, we argue that richer information about personal social structure of individuals might lead to better predictions. In this paper, we propose to leverage well-established social cognitive theories to improve link prediction performance. According to these theories, individuals arrange their social relationships along, on average, five concentric circles of decreasing intimacy. We postulate that relationships in different circles have different importance in predicting new links. In order to validate this claim, we focus on popular feature-extraction prediction algorithms (both unsupervised and supervised) and we extend them to include social-circles awareness. We validate the prediction performance of these circle-aware algorithms against several benchmarks (including their baseline versions as well as node-embedding- and GNN-based link prediction), leveraging two Twitter datasets comprising a community of video gamers and generic users. We show that social-awareness generally provides significant improvements in the prediction performance, beating also state-of-the-art solutions like node2vec and SEAL, and without increasing the computational complexity. Finally, we show that social-awareness can be used in place of using a classifier (which may be costly or impractical) for targeting a specific category of users." @default.
- W3201524732 created "2021-09-27" @default.
- W3201524732 creator A5018610428 @default.
- W3201524732 creator A5025706910 @default.
- W3201524732 creator A5042850190 @default.
- W3201524732 creator A5045425533 @default.
- W3201524732 date "2023-02-01" @default.
- W3201524732 modified "2023-10-17" @default.
- W3201524732 title "Harnessing the Power of Ego Network Layers for Link Prediction in Online Social Networks" @default.
- W3201524732 cites W1584308190 @default.
- W3201524732 cites W1928223220 @default.
- W3201524732 cites W1979104937 @default.
- W3201524732 cites W1983685710 @default.
- W3201524732 cites W2003707464 @default.
- W3201524732 cites W2007444087 @default.
- W3201524732 cites W2012909434 @default.
- W3201524732 cites W2039688703 @default.
- W3201524732 cites W2040884003 @default.
- W3201524732 cites W2042421074 @default.
- W3201524732 cites W2064503471 @default.
- W3201524732 cites W2074436399 @default.
- W3201524732 cites W2091019377 @default.
- W3201524732 cites W2092126505 @default.
- W3201524732 cites W2101108259 @default.
- W3201524732 cites W2124021496 @default.
- W3201524732 cites W2130354913 @default.
- W3201524732 cites W2154454189 @default.
- W3201524732 cites W2158778617 @default.
- W3201524732 cites W2196828480 @default.
- W3201524732 cites W2199592881 @default.
- W3201524732 cites W2267995638 @default.
- W3201524732 cites W2312200946 @default.
- W3201524732 cites W2417010772 @default.
- W3201524732 cites W2461839440 @default.
- W3201524732 cites W2564084673 @default.
- W3201524732 cites W2742503211 @default.
- W3201524732 cites W2898512177 @default.
- W3201524732 cites W2962756421 @default.
- W3201524732 cites W2963224980 @default.
- W3201524732 cites W2964280241 @default.
- W3201524732 cites W2969227524 @default.
- W3201524732 cites W3004621088 @default.
- W3201524732 cites W3087257704 @default.
- W3201524732 cites W3104097132 @default.
- W3201524732 cites W3106145758 @default.
- W3201524732 cites W3112788036 @default.
- W3201524732 cites W3117740706 @default.
- W3201524732 cites W3123436322 @default.
- W3201524732 cites W3163923293 @default.
- W3201524732 cites W3185723782 @default.
- W3201524732 cites W4210257598 @default.
- W3201524732 cites W4232932184 @default.
- W3201524732 cites W4239099750 @default.
- W3201524732 cites W4241491750 @default.
- W3201524732 cites W4300456456 @default.
- W3201524732 doi "https://doi.org/10.1109/tcss.2022.3155946" @default.
- W3201524732 hasPublicationYear "2023" @default.
- W3201524732 type Work @default.
- W3201524732 sameAs 3201524732 @default.
- W3201524732 citedByCount "4" @default.
- W3201524732 countsByYear W32015247322022 @default.
- W3201524732 countsByYear W32015247322023 @default.
- W3201524732 crossrefType "journal-article" @default.
- W3201524732 hasAuthorship W3201524732A5018610428 @default.
- W3201524732 hasAuthorship W3201524732A5025706910 @default.
- W3201524732 hasAuthorship W3201524732A5042850190 @default.
- W3201524732 hasAuthorship W3201524732A5045425533 @default.
- W3201524732 hasBestOaLocation W32015247322 @default.
- W3201524732 hasConcept C111472728 @default.
- W3201524732 hasConcept C119857082 @default.
- W3201524732 hasConcept C136764020 @default.
- W3201524732 hasConcept C138885662 @default.
- W3201524732 hasConcept C153083717 @default.
- W3201524732 hasConcept C154945302 @default.
- W3201524732 hasConcept C2522767166 @default.
- W3201524732 hasConcept C2777522414 @default.
- W3201524732 hasConcept C2778136018 @default.
- W3201524732 hasConcept C41008148 @default.
- W3201524732 hasConcept C4727928 @default.
- W3201524732 hasConcept C518677369 @default.
- W3201524732 hasConcept C95623464 @default.
- W3201524732 hasConceptScore W3201524732C111472728 @default.
- W3201524732 hasConceptScore W3201524732C119857082 @default.
- W3201524732 hasConceptScore W3201524732C136764020 @default.
- W3201524732 hasConceptScore W3201524732C138885662 @default.
- W3201524732 hasConceptScore W3201524732C153083717 @default.
- W3201524732 hasConceptScore W3201524732C154945302 @default.
- W3201524732 hasConceptScore W3201524732C2522767166 @default.
- W3201524732 hasConceptScore W3201524732C2777522414 @default.
- W3201524732 hasConceptScore W3201524732C2778136018 @default.
- W3201524732 hasConceptScore W3201524732C41008148 @default.
- W3201524732 hasConceptScore W3201524732C4727928 @default.
- W3201524732 hasConceptScore W3201524732C518677369 @default.
- W3201524732 hasConceptScore W3201524732C95623464 @default.
- W3201524732 hasFunder F4320321090 @default.
- W3201524732 hasFunder F4320321843 @default.
- W3201524732 hasFunder F4320324632 @default.
- W3201524732 hasFunder F4320334627 @default.