Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201527114> ?p ?o ?g. }
- W3201527114 endingPage "109004" @default.
- W3201527114 startingPage "109004" @default.
- W3201527114 abstract "Accurate simulation of turbulent flow with separation is an important but challenging problem. In this paper, a data-driven Reynolds-averaged turbulence modeling approach, field inversion and machine learning is implemented to modify the Spalart–Allmaras model separately on three cases, namely, the S809 airfoil, a periodic hill and the GLC305 airfoil with ice shape 944. Field inversion based on a discrete adjoint method is used to quantify the model-form uncertainty with limited experimental data. An artificial neural network is trained to predict the model corrections with local flow features to extract generalized modeling knowledge. Physical knowledge of the nonequilibrium turbulence in the separating shear layer is considered when setting the prior model uncertainty. The results show that the model corrections from the field inversion demonstrate strong consistency with the underlying physical mechanism of nonequilibrium turbulence. The quantity of interest from the observation data can be reproduced with relatively high accuracy by the augmented model. In addition, the validation in similar flow conditions shows a certain extent of generalization ability." @default.
- W3201527114 created "2021-09-27" @default.
- W3201527114 creator A5004119465 @default.
- W3201527114 creator A5044630621 @default.
- W3201527114 creator A5052931526 @default.
- W3201527114 creator A5053646906 @default.
- W3201527114 date "2022-08-01" @default.
- W3201527114 modified "2023-10-17" @default.
- W3201527114 title "Data-driven turbulence modeling in separated flows considering physical mechanism analysis" @default.
- W3201527114 cites W1969164548 @default.
- W3201527114 cites W1970021149 @default.
- W3201527114 cites W1973644287 @default.
- W3201527114 cites W1974961323 @default.
- W3201527114 cites W1982428516 @default.
- W3201527114 cites W2007139313 @default.
- W3201527114 cites W2011838656 @default.
- W3201527114 cites W2015037678 @default.
- W3201527114 cites W2027310995 @default.
- W3201527114 cites W2052824539 @default.
- W3201527114 cites W2074976771 @default.
- W3201527114 cites W2076412888 @default.
- W3201527114 cites W2082863460 @default.
- W3201527114 cites W2098720228 @default.
- W3201527114 cites W2105355027 @default.
- W3201527114 cites W2110418811 @default.
- W3201527114 cites W2111851584 @default.
- W3201527114 cites W2114597014 @default.
- W3201527114 cites W2239054045 @default.
- W3201527114 cites W2314545865 @default.
- W3201527114 cites W2322261300 @default.
- W3201527114 cites W2328603798 @default.
- W3201527114 cites W2331118506 @default.
- W3201527114 cites W2344479506 @default.
- W3201527114 cites W2490045648 @default.
- W3201527114 cites W2534240011 @default.
- W3201527114 cites W2728522078 @default.
- W3201527114 cites W2755092500 @default.
- W3201527114 cites W2795982117 @default.
- W3201527114 cites W2811020507 @default.
- W3201527114 cites W2921838509 @default.
- W3201527114 cites W2951499300 @default.
- W3201527114 cites W2962757926 @default.
- W3201527114 cites W2971552201 @default.
- W3201527114 cites W2994070579 @default.
- W3201527114 cites W2995408993 @default.
- W3201527114 cites W3000196868 @default.
- W3201527114 cites W3008009800 @default.
- W3201527114 cites W3013108861 @default.
- W3201527114 cites W3033223443 @default.
- W3201527114 cites W3091186176 @default.
- W3201527114 cites W3091596879 @default.
- W3201527114 cites W3105469151 @default.
- W3201527114 cites W3166460836 @default.
- W3201527114 cites W3190217411 @default.
- W3201527114 cites W3210779024 @default.
- W3201527114 doi "https://doi.org/10.1016/j.ijheatfluidflow.2022.109004" @default.
- W3201527114 hasPublicationYear "2022" @default.
- W3201527114 type Work @default.
- W3201527114 sameAs 3201527114 @default.
- W3201527114 citedByCount "6" @default.
- W3201527114 countsByYear W32015271142022 @default.
- W3201527114 countsByYear W32015271142023 @default.
- W3201527114 crossrefType "journal-article" @default.
- W3201527114 hasAuthorship W3201527114A5004119465 @default.
- W3201527114 hasAuthorship W3201527114A5044630621 @default.
- W3201527114 hasAuthorship W3201527114A5052931526 @default.
- W3201527114 hasAuthorship W3201527114A5053646906 @default.
- W3201527114 hasBestOaLocation W32015271142 @default.
- W3201527114 hasConcept C109007969 @default.
- W3201527114 hasConcept C112124176 @default.
- W3201527114 hasConcept C121332964 @default.
- W3201527114 hasConcept C121864883 @default.
- W3201527114 hasConcept C127313418 @default.
- W3201527114 hasConcept C150711758 @default.
- W3201527114 hasConcept C151730666 @default.
- W3201527114 hasConcept C154945302 @default.
- W3201527114 hasConcept C189223162 @default.
- W3201527114 hasConcept C1893757 @default.
- W3201527114 hasConcept C196558001 @default.
- W3201527114 hasConcept C204573209 @default.
- W3201527114 hasConcept C41008148 @default.
- W3201527114 hasConcept C50644808 @default.
- W3201527114 hasConcept C57879066 @default.
- W3201527114 hasConcept C74859849 @default.
- W3201527114 hasConcept C97355855 @default.
- W3201527114 hasConceptScore W3201527114C109007969 @default.
- W3201527114 hasConceptScore W3201527114C112124176 @default.
- W3201527114 hasConceptScore W3201527114C121332964 @default.
- W3201527114 hasConceptScore W3201527114C121864883 @default.
- W3201527114 hasConceptScore W3201527114C127313418 @default.
- W3201527114 hasConceptScore W3201527114C150711758 @default.
- W3201527114 hasConceptScore W3201527114C151730666 @default.
- W3201527114 hasConceptScore W3201527114C154945302 @default.
- W3201527114 hasConceptScore W3201527114C189223162 @default.
- W3201527114 hasConceptScore W3201527114C1893757 @default.
- W3201527114 hasConceptScore W3201527114C196558001 @default.
- W3201527114 hasConceptScore W3201527114C204573209 @default.
- W3201527114 hasConceptScore W3201527114C41008148 @default.