Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201527902> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3201527902 endingPage "493" @default.
- W3201527902 startingPage "473" @default.
- W3201527902 abstract "We focus on deep learning algorithms, improving upon the weather research and forecasting (WRF) model, and we show that the combination of these methods produces day-ahead wind speed predictions of high accuracy, with no need for previous-day measurements. We also show that previous-day data offer a significant enhancement in a short-term neural network for hour-ahead predictions, assuming that they are available on a daily basis. Our main contribution is the design and testing of original neural networks that capture both spatial and temporal characteristics of the wind, by combining convolutional (CNN) as well as recurrent (RNN) neural networks. The input predictions are obtained by a WRF model that we appropriately parameterize; we also specify a grid adapted to each park so as to capture its topography. Training uses historical data from five wind farms in Greece, and the 5-month testing period includes winter months, which exhibit the highest wind speed values. Our models improve WRF accuracy on average by 19.4%, and the improvement occurs in every month; expectedly, the improvement is lowest for the park where WRF performs best. Our neural network is competitive to state-of-the-art models, achieving an average MAE of 1.75 m/s. Accuracy improves for speed values up to 20 m/s, which are important in wind energy prediction. We also develop an RNN model and show that MAE reduces to less than 1 m/s for short-term predictions if actual data is employed." @default.
- W3201527902 created "2021-09-27" @default.
- W3201527902 creator A5003878814 @default.
- W3201527902 creator A5033685055 @default.
- W3201527902 creator A5039093516 @default.
- W3201527902 creator A5082279503 @default.
- W3201527902 creator A5087662998 @default.
- W3201527902 date "2021-09-15" @default.
- W3201527902 modified "2023-09-29" @default.
- W3201527902 title "Spatio-temporal deep learning for day-ahead wind speed forecasting relying on WRF predictions" @default.
- W3201527902 cites W1200498302 @default.
- W3201527902 cites W1968315006 @default.
- W3201527902 cites W2038549885 @default.
- W3201527902 cites W2064675550 @default.
- W3201527902 cites W2071942969 @default.
- W3201527902 cites W2130404254 @default.
- W3201527902 cites W2175389419 @default.
- W3201527902 cites W2288689185 @default.
- W3201527902 cites W2509516970 @default.
- W3201527902 cites W2516998189 @default.
- W3201527902 cites W2560370080 @default.
- W3201527902 cites W2896614541 @default.
- W3201527902 cites W2943894916 @default.
- W3201527902 cites W3005596121 @default.
- W3201527902 cites W3043454378 @default.
- W3201527902 cites W3082156068 @default.
- W3201527902 doi "https://doi.org/10.1007/s12667-021-00480-6" @default.
- W3201527902 hasPublicationYear "2021" @default.
- W3201527902 type Work @default.
- W3201527902 sameAs 3201527902 @default.
- W3201527902 citedByCount "4" @default.
- W3201527902 countsByYear W32015279022021 @default.
- W3201527902 countsByYear W32015279022022 @default.
- W3201527902 countsByYear W32015279022023 @default.
- W3201527902 crossrefType "journal-article" @default.
- W3201527902 hasAuthorship W3201527902A5003878814 @default.
- W3201527902 hasAuthorship W3201527902A5033685055 @default.
- W3201527902 hasAuthorship W3201527902A5039093516 @default.
- W3201527902 hasAuthorship W3201527902A5082279503 @default.
- W3201527902 hasAuthorship W3201527902A5087662998 @default.
- W3201527902 hasBestOaLocation W32015279022 @default.
- W3201527902 hasConcept C108583219 @default.
- W3201527902 hasConcept C119857082 @default.
- W3201527902 hasConcept C133204551 @default.
- W3201527902 hasConcept C147168706 @default.
- W3201527902 hasConcept C153294291 @default.
- W3201527902 hasConcept C154945302 @default.
- W3201527902 hasConcept C161067210 @default.
- W3201527902 hasConcept C205649164 @default.
- W3201527902 hasConcept C41008148 @default.
- W3201527902 hasConcept C50644808 @default.
- W3201527902 hasConcept C81363708 @default.
- W3201527902 hasConceptScore W3201527902C108583219 @default.
- W3201527902 hasConceptScore W3201527902C119857082 @default.
- W3201527902 hasConceptScore W3201527902C133204551 @default.
- W3201527902 hasConceptScore W3201527902C147168706 @default.
- W3201527902 hasConceptScore W3201527902C153294291 @default.
- W3201527902 hasConceptScore W3201527902C154945302 @default.
- W3201527902 hasConceptScore W3201527902C161067210 @default.
- W3201527902 hasConceptScore W3201527902C205649164 @default.
- W3201527902 hasConceptScore W3201527902C41008148 @default.
- W3201527902 hasConceptScore W3201527902C50644808 @default.
- W3201527902 hasConceptScore W3201527902C81363708 @default.
- W3201527902 hasIssue "2" @default.
- W3201527902 hasLocation W32015279021 @default.
- W3201527902 hasLocation W32015279022 @default.
- W3201527902 hasLocation W32015279023 @default.
- W3201527902 hasOpenAccess W3201527902 @default.
- W3201527902 hasPrimaryLocation W32015279021 @default.
- W3201527902 hasRelatedWork W2731899572 @default.
- W3201527902 hasRelatedWork W2999805992 @default.
- W3201527902 hasRelatedWork W3116150086 @default.
- W3201527902 hasRelatedWork W3133861977 @default.
- W3201527902 hasRelatedWork W4200173597 @default.
- W3201527902 hasRelatedWork W4223943233 @default.
- W3201527902 hasRelatedWork W4291897433 @default.
- W3201527902 hasRelatedWork W4312417841 @default.
- W3201527902 hasRelatedWork W4321369474 @default.
- W3201527902 hasRelatedWork W4380075502 @default.
- W3201527902 hasVolume "14" @default.
- W3201527902 isParatext "false" @default.
- W3201527902 isRetracted "false" @default.
- W3201527902 magId "3201527902" @default.
- W3201527902 workType "article" @default.