Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201532693> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3201532693 endingPage "1271" @default.
- W3201532693 startingPage "1257" @default.
- W3201532693 abstract "In agriculture, plant diseases are mainly accountable for reduction in productivity and leads to huge economic loss. Rice is the essential food crop in Asian countries and it gets easily affected by different kinds of diseases. Because of the advent of computer vision and deep learning (DL) techniques, the rice plant diseases can be detected and reduce the burden of the farmers to save the crops. To achieve this, a new DL based rice plant disease diagnosis is developed using Densely Convolution Neural Network (DenseNet) with multilayer perceptron (MLP), called DenseNet169-MLP. The proposed model aims to classify the rice plant disease into three classes namely Bacterial Leaf Blight, Brown Spot, and Leaf Smut. Initially, preprocessing takes place in three levels namely channel separation, grayscale conversion, and noise removal using median filtering (MF). Then, the fuzzy c-means (FCM) based segmentation process identifies the diseased portion in the rice plant image. The pretrained DenseNet169 technique is used as a feature extractor and the final layer is replaced by the MLP to perform rice plant disease classification. The effectiveness of the proposed model has been validated against benchmark dataset and the simulation outcome is examined under diverse measures. The obtained results defined the superior results of the DenseNet169-MLP model over the recently presented methods with the maximum accuracy of 97.68%." @default.
- W3201532693 created "2021-09-27" @default.
- W3201532693 creator A5054137520 @default.
- W3201532693 creator A5071772032 @default.
- W3201532693 creator A5077929608 @default.
- W3201532693 date "2022-01-01" @default.
- W3201532693 modified "2023-10-04" @default.
- W3201532693 title "Deep Transfer Learning Based Rice Plant Disease Detection Model" @default.
- W3201532693 cites W2100495367 @default.
- W3201532693 cites W2589085805 @default.
- W3201532693 cites W2731165298 @default.
- W3201532693 cites W2736026939 @default.
- W3201532693 cites W2758216428 @default.
- W3201532693 cites W2767767563 @default.
- W3201532693 cites W2789255992 @default.
- W3201532693 cites W2792879751 @default.
- W3201532693 cites W2799437918 @default.
- W3201532693 cites W2904287468 @default.
- W3201532693 cites W2906948457 @default.
- W3201532693 cites W2914201981 @default.
- W3201532693 cites W2915159483 @default.
- W3201532693 cites W2972113714 @default.
- W3201532693 cites W3007337743 @default.
- W3201532693 cites W3010655531 @default.
- W3201532693 cites W3014379759 @default.
- W3201532693 cites W3016751150 @default.
- W3201532693 cites W3034094654 @default.
- W3201532693 cites W3150482413 @default.
- W3201532693 doi "https://doi.org/10.32604/iasc.2022.020679" @default.
- W3201532693 hasPublicationYear "2022" @default.
- W3201532693 type Work @default.
- W3201532693 sameAs 3201532693 @default.
- W3201532693 citedByCount "17" @default.
- W3201532693 countsByYear W32015326932022 @default.
- W3201532693 countsByYear W32015326932023 @default.
- W3201532693 crossrefType "journal-article" @default.
- W3201532693 hasAuthorship W3201532693A5054137520 @default.
- W3201532693 hasAuthorship W3201532693A5071772032 @default.
- W3201532693 hasAuthorship W3201532693A5077929608 @default.
- W3201532693 hasBestOaLocation W32015326931 @default.
- W3201532693 hasConcept C108583219 @default.
- W3201532693 hasConcept C119857082 @default.
- W3201532693 hasConcept C138885662 @default.
- W3201532693 hasConcept C150899416 @default.
- W3201532693 hasConcept C150903083 @default.
- W3201532693 hasConcept C153180895 @default.
- W3201532693 hasConcept C154945302 @default.
- W3201532693 hasConcept C2776401178 @default.
- W3201532693 hasConcept C3019235130 @default.
- W3201532693 hasConcept C34736171 @default.
- W3201532693 hasConcept C41008148 @default.
- W3201532693 hasConcept C41895202 @default.
- W3201532693 hasConcept C81363708 @default.
- W3201532693 hasConcept C86803240 @default.
- W3201532693 hasConceptScore W3201532693C108583219 @default.
- W3201532693 hasConceptScore W3201532693C119857082 @default.
- W3201532693 hasConceptScore W3201532693C138885662 @default.
- W3201532693 hasConceptScore W3201532693C150899416 @default.
- W3201532693 hasConceptScore W3201532693C150903083 @default.
- W3201532693 hasConceptScore W3201532693C153180895 @default.
- W3201532693 hasConceptScore W3201532693C154945302 @default.
- W3201532693 hasConceptScore W3201532693C2776401178 @default.
- W3201532693 hasConceptScore W3201532693C3019235130 @default.
- W3201532693 hasConceptScore W3201532693C34736171 @default.
- W3201532693 hasConceptScore W3201532693C41008148 @default.
- W3201532693 hasConceptScore W3201532693C41895202 @default.
- W3201532693 hasConceptScore W3201532693C81363708 @default.
- W3201532693 hasConceptScore W3201532693C86803240 @default.
- W3201532693 hasIssue "2" @default.
- W3201532693 hasLocation W32015326931 @default.
- W3201532693 hasOpenAccess W3201532693 @default.
- W3201532693 hasPrimaryLocation W32015326931 @default.
- W3201532693 hasRelatedWork W3018421652 @default.
- W3201532693 hasRelatedWork W3021430260 @default.
- W3201532693 hasRelatedWork W3091976719 @default.
- W3201532693 hasRelatedWork W3192840557 @default.
- W3201532693 hasRelatedWork W3195938642 @default.
- W3201532693 hasRelatedWork W4220996320 @default.
- W3201532693 hasRelatedWork W4226119185 @default.
- W3201532693 hasRelatedWork W4285149559 @default.
- W3201532693 hasRelatedWork W4312200629 @default.
- W3201532693 hasRelatedWork W4382286161 @default.
- W3201532693 hasVolume "31" @default.
- W3201532693 isParatext "false" @default.
- W3201532693 isRetracted "false" @default.
- W3201532693 magId "3201532693" @default.
- W3201532693 workType "article" @default.