Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201540369> ?p ?o ?g. }
- W3201540369 endingPage "107544" @default.
- W3201540369 startingPage "107544" @default.
- W3201540369 abstract "Adequate frequent information on state variables of a process is sometimes needed for effective control and monitoring of the process. However, it is not often available in practice, which can be addressed using a state estimator. This work deals with distributed state estimation in large-scale processes. The decomposition of a process into observable subsystems is formulated as an optimization problem, which is solved using an efficient whale optimization algorithm. Four nonlinear state estimation methods (extended Kalman, unscented Kalman, spherical unscented Kalman, and cubature Kalman filtering) are then implemented and compared using distributed and centralized architectures on a process consisting of two reactors and a separator, and the Tennessee Eastman process. A parallelization strategy that improves the computational efficiency of the distributed architecture is proposed. Simulation results show that the parallel implementation of the distributed filtering methods is computationally more efficient than their centralized counterparts while yielding similarly accurate state estimates." @default.
- W3201540369 created "2021-09-27" @default.
- W3201540369 creator A5016622075 @default.
- W3201540369 creator A5045208880 @default.
- W3201540369 creator A5053380932 @default.
- W3201540369 creator A5068047376 @default.
- W3201540369 creator A5077418513 @default.
- W3201540369 date "2022-01-01" @default.
- W3201540369 modified "2023-10-16" @default.
- W3201540369 title "Distributed state estimation in large-scale processes decomposed into observable subsystems using community detection" @default.
- W3201540369 cites W1969871621 @default.
- W3201540369 cites W1977280337 @default.
- W3201540369 cites W1998586062 @default.
- W3201540369 cites W2000580046 @default.
- W3201540369 cites W2004186751 @default.
- W3201540369 cites W2014673746 @default.
- W3201540369 cites W2016456873 @default.
- W3201540369 cites W2034764524 @default.
- W3201540369 cites W2037924503 @default.
- W3201540369 cites W2049098144 @default.
- W3201540369 cites W2050386482 @default.
- W3201540369 cites W2050559349 @default.
- W3201540369 cites W2054091988 @default.
- W3201540369 cites W2064217415 @default.
- W3201540369 cites W2073750699 @default.
- W3201540369 cites W2075497335 @default.
- W3201540369 cites W2095293504 @default.
- W3201540369 cites W2097089521 @default.
- W3201540369 cites W2098613108 @default.
- W3201540369 cites W2098865243 @default.
- W3201540369 cites W2104192126 @default.
- W3201540369 cites W2109726592 @default.
- W3201540369 cites W2121990344 @default.
- W3201540369 cites W2123487311 @default.
- W3201540369 cites W2126105956 @default.
- W3201540369 cites W2129295157 @default.
- W3201540369 cites W2169329579 @default.
- W3201540369 cites W2173487526 @default.
- W3201540369 cites W2289318735 @default.
- W3201540369 cites W2290883490 @default.
- W3201540369 cites W2296787152 @default.
- W3201540369 cites W2473171163 @default.
- W3201540369 cites W2570372101 @default.
- W3201540369 cites W2740118487 @default.
- W3201540369 cites W2766275294 @default.
- W3201540369 cites W2792106777 @default.
- W3201540369 cites W2944085351 @default.
- W3201540369 cites W2951280553 @default.
- W3201540369 cites W2970388638 @default.
- W3201540369 cites W3001780261 @default.
- W3201540369 cites W3011891958 @default.
- W3201540369 cites W3028010050 @default.
- W3201540369 cites W3081737306 @default.
- W3201540369 cites W3098633102 @default.
- W3201540369 cites W4248035452 @default.
- W3201540369 doi "https://doi.org/10.1016/j.compchemeng.2021.107544" @default.
- W3201540369 hasPublicationYear "2022" @default.
- W3201540369 type Work @default.
- W3201540369 sameAs 3201540369 @default.
- W3201540369 citedByCount "5" @default.
- W3201540369 countsByYear W32015403692022 @default.
- W3201540369 countsByYear W32015403692023 @default.
- W3201540369 crossrefType "journal-article" @default.
- W3201540369 hasAuthorship W3201540369A5016622075 @default.
- W3201540369 hasAuthorship W3201540369A5045208880 @default.
- W3201540369 hasAuthorship W3201540369A5053380932 @default.
- W3201540369 hasAuthorship W3201540369A5068047376 @default.
- W3201540369 hasAuthorship W3201540369A5077418513 @default.
- W3201540369 hasConcept C105795698 @default.
- W3201540369 hasConcept C111919701 @default.
- W3201540369 hasConcept C11413529 @default.
- W3201540369 hasConcept C121332964 @default.
- W3201540369 hasConcept C126255220 @default.
- W3201540369 hasConcept C139399703 @default.
- W3201540369 hasConcept C150679823 @default.
- W3201540369 hasConcept C154945302 @default.
- W3201540369 hasConcept C157286648 @default.
- W3201540369 hasConcept C158622935 @default.
- W3201540369 hasConcept C183560197 @default.
- W3201540369 hasConcept C185429906 @default.
- W3201540369 hasConcept C206833254 @default.
- W3201540369 hasConcept C2775924081 @default.
- W3201540369 hasConcept C32848918 @default.
- W3201540369 hasConcept C33923547 @default.
- W3201540369 hasConcept C41008148 @default.
- W3201540369 hasConcept C47446073 @default.
- W3201540369 hasConcept C48103436 @default.
- W3201540369 hasConcept C62520636 @default.
- W3201540369 hasConcept C98045186 @default.
- W3201540369 hasConceptScore W3201540369C105795698 @default.
- W3201540369 hasConceptScore W3201540369C111919701 @default.
- W3201540369 hasConceptScore W3201540369C11413529 @default.
- W3201540369 hasConceptScore W3201540369C121332964 @default.
- W3201540369 hasConceptScore W3201540369C126255220 @default.
- W3201540369 hasConceptScore W3201540369C139399703 @default.
- W3201540369 hasConceptScore W3201540369C150679823 @default.
- W3201540369 hasConceptScore W3201540369C154945302 @default.
- W3201540369 hasConceptScore W3201540369C157286648 @default.