Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201565887> ?p ?o ?g. }
- W3201565887 endingPage "538" @default.
- W3201565887 startingPage "523" @default.
- W3201565887 abstract "Spreading of automatically generated clickbaits, fake news, and fake reviews undermines the veracity of the internet as a credible source of information. We investigate the problem of recognizing automatically generated short texts by exploring different Deep Learning models. To improve the classification results, we use text augmentation techniques and classifier hyperparameter optimization. For word embedding and vectorization we use Glove and RoBERTa. We compare the performance of dense neural network, convolutional neural network, gated recurrent network, and hierarchical attention network. The experiments on the TweepFake dataset achieved an 89.7% accuracy." @default.
- W3201565887 created "2021-09-27" @default.
- W3201565887 creator A5042653526 @default.
- W3201565887 creator A5043042273 @default.
- W3201565887 creator A5047212702 @default.
- W3201565887 date "2021-01-01" @default.
- W3201565887 modified "2023-10-16" @default.
- W3201565887 title "Deep Fake Recognition in Tweets Using Text Augmentation, Word Embeddings and Deep Learning" @default.
- W3201565887 cites W1437335841 @default.
- W3201565887 cites W1979076595 @default.
- W3201565887 cites W2029115643 @default.
- W3201565887 cites W2039530600 @default.
- W3201565887 cites W2058907739 @default.
- W3201565887 cites W2064675550 @default.
- W3201565887 cites W2157331557 @default.
- W3201565887 cites W2250539671 @default.
- W3201565887 cites W2569238137 @default.
- W3201565887 cites W2741838983 @default.
- W3201565887 cites W2753241397 @default.
- W3201565887 cites W2789426727 @default.
- W3201565887 cites W2791544114 @default.
- W3201565887 cites W2800869061 @default.
- W3201565887 cites W2810351084 @default.
- W3201565887 cites W2885386871 @default.
- W3201565887 cites W2897701541 @default.
- W3201565887 cites W2913351023 @default.
- W3201565887 cites W2944575651 @default.
- W3201565887 cites W2945928904 @default.
- W3201565887 cites W2946068894 @default.
- W3201565887 cites W2963545917 @default.
- W3201565887 cites W2971296908 @default.
- W3201565887 cites W2974087526 @default.
- W3201565887 cites W2975067599 @default.
- W3201565887 cites W2976074270 @default.
- W3201565887 cites W2977526300 @default.
- W3201565887 cites W2981025273 @default.
- W3201565887 cites W2987479080 @default.
- W3201565887 cites W3001895040 @default.
- W3201565887 cites W3003892205 @default.
- W3201565887 cites W3005716085 @default.
- W3201565887 cites W3011403719 @default.
- W3201565887 cites W3013658006 @default.
- W3201565887 cites W3022435406 @default.
- W3201565887 cites W3022839720 @default.
- W3201565887 cites W3023367181 @default.
- W3201565887 cites W3023514002 @default.
- W3201565887 cites W3043310823 @default.
- W3201565887 cites W3046357466 @default.
- W3201565887 cites W3080295236 @default.
- W3201565887 cites W3080422726 @default.
- W3201565887 cites W3082260859 @default.
- W3201565887 cites W3084079157 @default.
- W3201565887 cites W3091174347 @default.
- W3201565887 cites W3094183635 @default.
- W3201565887 cites W3096798592 @default.
- W3201565887 cites W3098341425 @default.
- W3201565887 cites W3103872969 @default.
- W3201565887 cites W3107425599 @default.
- W3201565887 cites W3108703399 @default.
- W3201565887 doi "https://doi.org/10.1007/978-3-030-86979-3_37" @default.
- W3201565887 hasPublicationYear "2021" @default.
- W3201565887 type Work @default.
- W3201565887 sameAs 3201565887 @default.
- W3201565887 citedByCount "11" @default.
- W3201565887 countsByYear W32015658872022 @default.
- W3201565887 countsByYear W32015658872023 @default.
- W3201565887 crossrefType "book-chapter" @default.
- W3201565887 hasAuthorship W3201565887A5042653526 @default.
- W3201565887 hasAuthorship W3201565887A5043042273 @default.
- W3201565887 hasAuthorship W3201565887A5047212702 @default.
- W3201565887 hasConcept C108583219 @default.
- W3201565887 hasConcept C108827166 @default.
- W3201565887 hasConcept C138885662 @default.
- W3201565887 hasConcept C154945302 @default.
- W3201565887 hasConcept C204321447 @default.
- W3201565887 hasConcept C2779756789 @default.
- W3201565887 hasConcept C41008148 @default.
- W3201565887 hasConcept C41895202 @default.
- W3201565887 hasConcept C90805587 @default.
- W3201565887 hasConceptScore W3201565887C108583219 @default.
- W3201565887 hasConceptScore W3201565887C108827166 @default.
- W3201565887 hasConceptScore W3201565887C138885662 @default.
- W3201565887 hasConceptScore W3201565887C154945302 @default.
- W3201565887 hasConceptScore W3201565887C204321447 @default.
- W3201565887 hasConceptScore W3201565887C2779756789 @default.
- W3201565887 hasConceptScore W3201565887C41008148 @default.
- W3201565887 hasConceptScore W3201565887C41895202 @default.
- W3201565887 hasConceptScore W3201565887C90805587 @default.
- W3201565887 hasLocation W32015658871 @default.
- W3201565887 hasOpenAccess W3201565887 @default.
- W3201565887 hasPrimaryLocation W32015658871 @default.
- W3201565887 hasRelatedWork W1508636238 @default.
- W3201565887 hasRelatedWork W2126887587 @default.
- W3201565887 hasRelatedWork W2360025963 @default.
- W3201565887 hasRelatedWork W2731899572 @default.
- W3201565887 hasRelatedWork W2939353110 @default.
- W3201565887 hasRelatedWork W2993873509 @default.
- W3201565887 hasRelatedWork W3009238340 @default.