Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201569852> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3201569852 endingPage "460" @default.
- W3201569852 startingPage "451" @default.
- W3201569852 abstract "In many clinical applications, 3D reconstruction of patient-specific structures is of major interest. Despite great effort put in 2D-3D reconstruction, gold standard bone reconstruction obtained by segmentation on CT images is still mostly used – at the expense of exposing patients to significant ionizing radiation and increased health costs. State-of-the-art 2D-3D reconstruction methods are based on non-rigid registration of digitally reconstructed radiographs (DRR) – aiming at full automation – but with varying accuracy often exceeding clinical requirements. Conversely, contour-based approaches can lead to accurate results but strongly depend on the quality of extracted contours and have been left aside in recent years. In this study, we revisit a patient-specific 2D-3D reconstruction method for the proximal femur based on contours, image cues, and knowledge-based deformable models. 3D statistical shape models were built using 199 CT scans from THA patients that were used to generate pairs of high fidelity DRRs. Convolutional neural networks were trained using the DRRs to investigate automatic contouring. Experiments were conducted on the DRRs, and calibrated radiographs of a pelvis phantom and volunteers – with an analysis of the quality of contouring and its automatization. Using manual contours and DRR, the best reconstruction error was 1.02 mm. With state-of-the-art results for 2D-3D reconstruction of the proximal femur, we highlighted the relevance and challenges of using contour-driven reconstruction to yield patient-specific models." @default.
- W3201569852 created "2021-09-27" @default.
- W3201569852 creator A5074177240 @default.
- W3201569852 creator A5090061896 @default.
- W3201569852 date "2021-01-01" @default.
- W3201569852 modified "2023-10-03" @default.
- W3201569852 title "Revisiting Contour-Driven and Knowledge-Based Deformable Models: Application to 2D-3D Proximal Femur Reconstruction from X-ray Images" @default.
- W3201569852 cites W1555620887 @default.
- W3201569852 cites W1972344168 @default.
- W3201569852 cites W2002968454 @default.
- W3201569852 cites W2023473820 @default.
- W3201569852 cites W2024501140 @default.
- W3201569852 cites W2041633571 @default.
- W3201569852 cites W2046655339 @default.
- W3201569852 cites W2085534648 @default.
- W3201569852 cites W2119607559 @default.
- W3201569852 cites W2138860139 @default.
- W3201569852 cites W2158596786 @default.
- W3201569852 cites W2161739205 @default.
- W3201569852 cites W2316034920 @default.
- W3201569852 cites W2323970633 @default.
- W3201569852 cites W2604340390 @default.
- W3201569852 cites W2604968042 @default.
- W3201569852 cites W2755259351 @default.
- W3201569852 cites W2897453080 @default.
- W3201569852 cites W2907382222 @default.
- W3201569852 cites W2963270077 @default.
- W3201569852 cites W2996290406 @default.
- W3201569852 cites W3017446891 @default.
- W3201569852 cites W3034429256 @default.
- W3201569852 cites W3047916742 @default.
- W3201569852 cites W3109389373 @default.
- W3201569852 cites W3119906238 @default.
- W3201569852 doi "https://doi.org/10.1007/978-3-030-87231-1_44" @default.
- W3201569852 hasPublicationYear "2021" @default.
- W3201569852 type Work @default.
- W3201569852 sameAs 3201569852 @default.
- W3201569852 citedByCount "1" @default.
- W3201569852 countsByYear W32015698522023 @default.
- W3201569852 crossrefType "book-chapter" @default.
- W3201569852 hasAuthorship W3201569852A5074177240 @default.
- W3201569852 hasAuthorship W3201569852A5090061896 @default.
- W3201569852 hasBestOaLocation W32015698522 @default.
- W3201569852 hasConcept C104293457 @default.
- W3201569852 hasConcept C109950114 @default.
- W3201569852 hasConcept C121684516 @default.
- W3201569852 hasConcept C126838900 @default.
- W3201569852 hasConcept C141379421 @default.
- W3201569852 hasConcept C154945302 @default.
- W3201569852 hasConcept C2779104521 @default.
- W3201569852 hasConcept C2989005 @default.
- W3201569852 hasConcept C31972630 @default.
- W3201569852 hasConcept C36454342 @default.
- W3201569852 hasConcept C41008148 @default.
- W3201569852 hasConcept C71924100 @default.
- W3201569852 hasConcept C89600930 @default.
- W3201569852 hasConceptScore W3201569852C104293457 @default.
- W3201569852 hasConceptScore W3201569852C109950114 @default.
- W3201569852 hasConceptScore W3201569852C121684516 @default.
- W3201569852 hasConceptScore W3201569852C126838900 @default.
- W3201569852 hasConceptScore W3201569852C141379421 @default.
- W3201569852 hasConceptScore W3201569852C154945302 @default.
- W3201569852 hasConceptScore W3201569852C2779104521 @default.
- W3201569852 hasConceptScore W3201569852C2989005 @default.
- W3201569852 hasConceptScore W3201569852C31972630 @default.
- W3201569852 hasConceptScore W3201569852C36454342 @default.
- W3201569852 hasConceptScore W3201569852C41008148 @default.
- W3201569852 hasConceptScore W3201569852C71924100 @default.
- W3201569852 hasConceptScore W3201569852C89600930 @default.
- W3201569852 hasLocation W32015698521 @default.
- W3201569852 hasLocation W32015698522 @default.
- W3201569852 hasOpenAccess W3201569852 @default.
- W3201569852 hasPrimaryLocation W32015698521 @default.
- W3201569852 hasRelatedWork W2093747323 @default.
- W3201569852 hasRelatedWork W2119493293 @default.
- W3201569852 hasRelatedWork W2397188463 @default.
- W3201569852 hasRelatedWork W2517246325 @default.
- W3201569852 hasRelatedWork W2901697715 @default.
- W3201569852 hasRelatedWork W2914011423 @default.
- W3201569852 hasRelatedWork W3011087369 @default.
- W3201569852 hasRelatedWork W3109244347 @default.
- W3201569852 hasRelatedWork W4210454584 @default.
- W3201569852 hasRelatedWork W4298129483 @default.
- W3201569852 isParatext "false" @default.
- W3201569852 isRetracted "false" @default.
- W3201569852 magId "3201569852" @default.
- W3201569852 workType "book-chapter" @default.