Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201601817> ?p ?o ?g. }
- W3201601817 endingPage "1098" @default.
- W3201601817 startingPage "1073" @default.
- W3201601817 abstract "Hospital readmission is a major cost for healthcare systems worldwide. If patients with a higher potential of readmission could be identified at the start, existing resources could be used more efficiently, and appropriate plans could be implemented to reduce the risk of readmission. Therefore, it is important to predict the right target patients. Medical data is usually noisy, incomplete, and inconsistent. Hence, before developing a prediction model, it is crucial to efficiently set up the predictive model so that improved predictive performance is achieved. The current study aims to analyse the impact of different preprocessing methods on the performance of different machine learning classifiers. The preprocessing applied by previous hospital readmission studies were compared, and the most common approaches highlighted such as missing value imputation, feature selection, data balancing, and feature scaling. The hyperparameters were selected using Bayesian optimisation. The different preprocessing pipelines were assessed using various performance metrics and computational costs. The results indicated that the preprocessing approaches helped improve the model’s prediction of hospital readmission." @default.
- W3201601817 created "2021-09-27" @default.
- W3201601817 creator A5070805897 @default.
- W3201601817 creator A5078279553 @default.
- W3201601817 creator A5090584812 @default.
- W3201601817 date "2021-09-15" @default.
- W3201601817 modified "2023-09-24" @default.
- W3201601817 title "Predictive modelling of hospital readmission: Evaluation of different preprocessing techniques on machine learning classifiers" @default.
- W3201601817 cites W1003628853 @default.
- W3201601817 cites W1183338643 @default.
- W3201601817 cites W1525006452 @default.
- W3201601817 cites W1919216911 @default.
- W3201601817 cites W1965973862 @default.
- W3201601817 cites W1969966515 @default.
- W3201601817 cites W1972879084 @default.
- W3201601817 cites W1989486755 @default.
- W3201601817 cites W1999466943 @default.
- W3201601817 cites W2002961621 @default.
- W3201601817 cites W2025062108 @default.
- W3201601817 cites W2031583147 @default.
- W3201601817 cites W2032734523 @default.
- W3201601817 cites W2042741206 @default.
- W3201601817 cites W2045635140 @default.
- W3201601817 cites W2049200403 @default.
- W3201601817 cites W2065974896 @default.
- W3201601817 cites W2072647517 @default.
- W3201601817 cites W2081306861 @default.
- W3201601817 cites W2086923543 @default.
- W3201601817 cites W2095179087 @default.
- W3201601817 cites W2102592043 @default.
- W3201601817 cites W2103867825 @default.
- W3201601817 cites W2110796408 @default.
- W3201601817 cites W2116270851 @default.
- W3201601817 cites W2117011824 @default.
- W3201601817 cites W2125449110 @default.
- W3201601817 cites W2128965734 @default.
- W3201601817 cites W2129657549 @default.
- W3201601817 cites W2129997990 @default.
- W3201601817 cites W2133506114 @default.
- W3201601817 cites W2136162321 @default.
- W3201601817 cites W2137080502 @default.
- W3201601817 cites W2147868146 @default.
- W3201601817 cites W2148143831 @default.
- W3201601817 cites W2159153363 @default.
- W3201601817 cites W2162772535 @default.
- W3201601817 cites W2169172234 @default.
- W3201601817 cites W2171322201 @default.
- W3201601817 cites W2187071163 @default.
- W3201601817 cites W2189149359 @default.
- W3201601817 cites W2192009965 @default.
- W3201601817 cites W2192203593 @default.
- W3201601817 cites W2237897547 @default.
- W3201601817 cites W2273949395 @default.
- W3201601817 cites W2332912320 @default.
- W3201601817 cites W2341755197 @default.
- W3201601817 cites W2404149411 @default.
- W3201601817 cites W2471825259 @default.
- W3201601817 cites W2478923244 @default.
- W3201601817 cites W2516368039 @default.
- W3201601817 cites W2517656122 @default.
- W3201601817 cites W2519078114 @default.
- W3201601817 cites W2530724435 @default.
- W3201601817 cites W2542719835 @default.
- W3201601817 cites W2556529874 @default.
- W3201601817 cites W2560183405 @default.
- W3201601817 cites W2569257128 @default.
- W3201601817 cites W2570719354 @default.
- W3201601817 cites W2583309737 @default.
- W3201601817 cites W2592799301 @default.
- W3201601817 cites W2614043484 @default.
- W3201601817 cites W2734648346 @default.
- W3201601817 cites W2735835382 @default.
- W3201601817 cites W2735864302 @default.
- W3201601817 cites W2744470820 @default.
- W3201601817 cites W2763307505 @default.
- W3201601817 cites W2767049649 @default.
- W3201601817 cites W2783479379 @default.
- W3201601817 cites W2790392145 @default.
- W3201601817 cites W2795475639 @default.
- W3201601817 cites W2800167607 @default.
- W3201601817 cites W2800726280 @default.
- W3201601817 cites W2803516046 @default.
- W3201601817 cites W2808897169 @default.
- W3201601817 cites W2810623657 @default.
- W3201601817 cites W2896258191 @default.
- W3201601817 cites W2897076465 @default.
- W3201601817 cites W2899639010 @default.
- W3201601817 cites W2911881031 @default.
- W3201601817 cites W2911964244 @default.
- W3201601817 cites W2920739212 @default.
- W3201601817 cites W2923546398 @default.
- W3201601817 cites W2963963837 @default.
- W3201601817 cites W2965743638 @default.
- W3201601817 cites W1435041976 @default.
- W3201601817 doi "https://doi.org/10.3233/ida-205468" @default.
- W3201601817 hasPublicationYear "2021" @default.
- W3201601817 type Work @default.
- W3201601817 sameAs 3201601817 @default.