Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201602502> ?p ?o ?g. }
- W3201602502 endingPage "115826" @default.
- W3201602502 startingPage "115826" @default.
- W3201602502 abstract "• Recommend citations from the perspective of cited paper instead of citing paper. • Design four forms of citation content for different citation motivations. • Design 132 methods for generating semantic representation of cited paper. • Find the most suitable form and method through quantitative comparisons. Citation recommendation can help researchers quickly find supplementary or alternative references in massive academic resources. Current research on citation recommendation mainly focuses on the citing papers, resulting in the enormous cited papers are ignored, including the relations among cited papers and their citation context cited in citing papers. Moreover, cited paper’s content is often denoted with its original title and abstract, which is hard to acquire and rarely considers different citation motivations. Furthermore, the most appropriate method for semantic representation of cited papers’ relations and content is uncertain. Therefore, this paper studies citation recommendation from the perspective of semantic representation of cited papers’ relations and content. Firstly, four forms of citation context are designed and extracted as cited papers’ content considering citation motivations, as well as co-citation relationships are extracted as cited papers’ relations. Secondly, 132 methods are designed for generating semantic vector of cited paper, including four network embedding methods, 16 methods by combining four text representation algorithms with four forms of citation content, and 112 fusion methods. Finally, similarity among cited papers is calculated for citation recommendation and a quantitative evaluation method based on link prediction is designed, to find the most appropriate form of citation content and the optimal method. The result shows that doc2vecC (Document to Vector through Corruption) with the form of CS&SS (Current Sentences and Surrounding Sentences) performs best, in which the AUC (Area Under Curve) and MAP (Macro Average Precision) reach 0.877 and 0.889 and have increased by 0.462 and 0.370 compared with the worst-performing method. This performance is slightly improved by parameters adjustment, and a case study is performed whose results have further proved the effectiveness of this method. In addition, among four forms of cited papers’ content, CS&SS performs best in almost all methods. Furthermore, the fusion methods not always perform better than the single methods, where doc2vecC (CS&SS) performs better than the best fusion method GCN (Graph Convolutional Network). These results not only prove the effectiveness of citation recommendation from the perspective of cited paper, but also provide helpful and useful suggestions for method selection and citation content selection. The data and conclusions can be extended to other text mining-related tasks. Simultaneously, it is a preliminary research which needs to be further studied in other domains using emerging semantic representation methods." @default.
- W3201602502 created "2021-09-27" @default.
- W3201602502 creator A5029259759 @default.
- W3201602502 creator A5041421865 @default.
- W3201602502 date "2022-01-01" @default.
- W3201602502 modified "2023-09-24" @default.
- W3201602502 title "Citation recommendation using semantic representation of cited papers’ relations and content" @default.
- W3201602502 cites W1850494429 @default.
- W3201602502 cites W1956701811 @default.
- W3201602502 cites W1963831852 @default.
- W3201602502 cites W1969360832 @default.
- W3201602502 cites W2007042460 @default.
- W3201602502 cites W2041829488 @default.
- W3201602502 cites W2062340319 @default.
- W3201602502 cites W2090891622 @default.
- W3201602502 cites W2091002342 @default.
- W3201602502 cites W2097314007 @default.
- W3201602502 cites W2101900104 @default.
- W3201602502 cites W2124610812 @default.
- W3201602502 cites W2135790056 @default.
- W3201602502 cites W2146936057 @default.
- W3201602502 cites W2147152072 @default.
- W3201602502 cites W2165611133 @default.
- W3201602502 cites W2250966211 @default.
- W3201602502 cites W2332282745 @default.
- W3201602502 cites W2390550821 @default.
- W3201602502 cites W2393319904 @default.
- W3201602502 cites W2469190938 @default.
- W3201602502 cites W2470673105 @default.
- W3201602502 cites W2514327694 @default.
- W3201602502 cites W2554987092 @default.
- W3201602502 cites W2565026778 @default.
- W3201602502 cites W2585247128 @default.
- W3201602502 cites W2598545596 @default.
- W3201602502 cites W2604227417 @default.
- W3201602502 cites W2612281806 @default.
- W3201602502 cites W2612297490 @default.
- W3201602502 cites W2740934577 @default.
- W3201602502 cites W2765431210 @default.
- W3201602502 cites W2766979421 @default.
- W3201602502 cites W2787905871 @default.
- W3201602502 cites W2802966978 @default.
- W3201602502 cites W2807563359 @default.
- W3201602502 cites W2895177843 @default.
- W3201602502 cites W2895692483 @default.
- W3201602502 cites W2898512177 @default.
- W3201602502 cites W2911304745 @default.
- W3201602502 cites W2922830882 @default.
- W3201602502 cites W2952667294 @default.
- W3201602502 cites W2962756421 @default.
- W3201602502 cites W2972437235 @default.
- W3201602502 cites W2982667460 @default.
- W3201602502 cites W2988777870 @default.
- W3201602502 cites W2996946686 @default.
- W3201602502 cites W3016383878 @default.
- W3201602502 cites W3034717099 @default.
- W3201602502 cites W3035059451 @default.
- W3201602502 cites W3043016077 @default.
- W3201602502 cites W3047241372 @default.
- W3201602502 cites W3082457674 @default.
- W3201602502 cites W3085668043 @default.
- W3201602502 cites W3089538137 @default.
- W3201602502 cites W3092009239 @default.
- W3201602502 cites W3104097132 @default.
- W3201602502 cites W3104426032 @default.
- W3201602502 cites W3104717349 @default.
- W3201602502 cites W3107194210 @default.
- W3201602502 doi "https://doi.org/10.1016/j.eswa.2021.115826" @default.
- W3201602502 hasPublicationYear "2022" @default.
- W3201602502 type Work @default.
- W3201602502 sameAs 3201602502 @default.
- W3201602502 citedByCount "8" @default.
- W3201602502 countsByYear W32016025022022 @default.
- W3201602502 countsByYear W32016025022023 @default.
- W3201602502 crossrefType "journal-article" @default.
- W3201602502 hasAuthorship W3201602502A5029259759 @default.
- W3201602502 hasAuthorship W3201602502A5041421865 @default.
- W3201602502 hasConcept C103278499 @default.
- W3201602502 hasConcept C105345328 @default.
- W3201602502 hasConcept C115961682 @default.
- W3201602502 hasConcept C12713177 @default.
- W3201602502 hasConcept C134306372 @default.
- W3201602502 hasConcept C136764020 @default.
- W3201602502 hasConcept C151730666 @default.
- W3201602502 hasConcept C154945302 @default.
- W3201602502 hasConcept C17744445 @default.
- W3201602502 hasConcept C199539241 @default.
- W3201602502 hasConcept C23123220 @default.
- W3201602502 hasConcept C2522767166 @default.
- W3201602502 hasConcept C2776359362 @default.
- W3201602502 hasConcept C2777946921 @default.
- W3201602502 hasConcept C2778152352 @default.
- W3201602502 hasConcept C2778805511 @default.
- W3201602502 hasConcept C2779343474 @default.
- W3201602502 hasConcept C33923547 @default.
- W3201602502 hasConcept C41008148 @default.
- W3201602502 hasConcept C86803240 @default.
- W3201602502 hasConcept C94625758 @default.