Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201602642> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3201602642 abstract "For most machine learning models, the mapping from the hyper-parameter set to the model's generalization error can be regarded as a complex black box function. Particle swarm optimization (PSO) methods cannot be directly used in the problem of hyper-parameters estimation since the mathematical formulation of the mapping from hyper-parameters to loss function or generalization accuracy is unclear. Functions with high evaluation costs can be solved by Bayesian optimization (BO) which converting the optimization of hyper-parameters into the optimization of an acquisition function. The proposed method in this paper uses the particle swarm method to optimize the acquisition function in the BO to get better hyper-parameters. The performances of proposed method in both of the classification and regression models are evaluated and demonstrated." @default.
- W3201602642 created "2021-09-27" @default.
- W3201602642 creator A5010526348 @default.
- W3201602642 creator A5016518361 @default.
- W3201602642 creator A5016904534 @default.
- W3201602642 creator A5044203733 @default.
- W3201602642 date "2021-07-18" @default.
- W3201602642 modified "2023-10-17" @default.
- W3201602642 title "Bayesian Optimization with Particle Swarm" @default.
- W3201602642 cites W1637371294 @default.
- W3201602642 cites W1875348914 @default.
- W3201602642 cites W1994005439 @default.
- W3201602642 cites W2033884996 @default.
- W3201602642 cites W2035593843 @default.
- W3201602642 cites W2045676435 @default.
- W3201602642 cites W2051434435 @default.
- W3201602642 cites W2067483921 @default.
- W3201602642 cites W2070207746 @default.
- W3201602642 cites W2111393363 @default.
- W3201602642 cites W2138273409 @default.
- W3201602642 cites W2146549162 @default.
- W3201602642 cites W2192203593 @default.
- W3201602642 cites W2802235618 @default.
- W3201602642 cites W3102476541 @default.
- W3201602642 cites W2147146143 @default.
- W3201602642 doi "https://doi.org/10.1109/ijcnn52387.2021.9533761" @default.
- W3201602642 hasPublicationYear "2021" @default.
- W3201602642 type Work @default.
- W3201602642 sameAs 3201602642 @default.
- W3201602642 citedByCount "1" @default.
- W3201602642 countsByYear W32016026422023 @default.
- W3201602642 crossrefType "proceedings-article" @default.
- W3201602642 hasAuthorship W3201602642A5010526348 @default.
- W3201602642 hasAuthorship W3201602642A5016518361 @default.
- W3201602642 hasAuthorship W3201602642A5016904534 @default.
- W3201602642 hasAuthorship W3201602642A5044203733 @default.
- W3201602642 hasConcept C11413529 @default.
- W3201602642 hasConcept C119857082 @default.
- W3201602642 hasConcept C122357587 @default.
- W3201602642 hasConcept C126255220 @default.
- W3201602642 hasConcept C134306372 @default.
- W3201602642 hasConcept C14036430 @default.
- W3201602642 hasConcept C154945302 @default.
- W3201602642 hasConcept C177148314 @default.
- W3201602642 hasConcept C177264268 @default.
- W3201602642 hasConcept C199360897 @default.
- W3201602642 hasConcept C2778049539 @default.
- W3201602642 hasConcept C33923547 @default.
- W3201602642 hasConcept C41008148 @default.
- W3201602642 hasConcept C78458016 @default.
- W3201602642 hasConcept C85617194 @default.
- W3201602642 hasConcept C86803240 @default.
- W3201602642 hasConceptScore W3201602642C11413529 @default.
- W3201602642 hasConceptScore W3201602642C119857082 @default.
- W3201602642 hasConceptScore W3201602642C122357587 @default.
- W3201602642 hasConceptScore W3201602642C126255220 @default.
- W3201602642 hasConceptScore W3201602642C134306372 @default.
- W3201602642 hasConceptScore W3201602642C14036430 @default.
- W3201602642 hasConceptScore W3201602642C154945302 @default.
- W3201602642 hasConceptScore W3201602642C177148314 @default.
- W3201602642 hasConceptScore W3201602642C177264268 @default.
- W3201602642 hasConceptScore W3201602642C199360897 @default.
- W3201602642 hasConceptScore W3201602642C2778049539 @default.
- W3201602642 hasConceptScore W3201602642C33923547 @default.
- W3201602642 hasConceptScore W3201602642C41008148 @default.
- W3201602642 hasConceptScore W3201602642C78458016 @default.
- W3201602642 hasConceptScore W3201602642C85617194 @default.
- W3201602642 hasConceptScore W3201602642C86803240 @default.
- W3201602642 hasFunder F4320321001 @default.
- W3201602642 hasFunder F4320335581 @default.
- W3201602642 hasLocation W32016026421 @default.
- W3201602642 hasOpenAccess W3201602642 @default.
- W3201602642 hasPrimaryLocation W32016026421 @default.
- W3201602642 hasRelatedWork W1747965218 @default.
- W3201602642 hasRelatedWork W1997830976 @default.
- W3201602642 hasRelatedWork W2084289551 @default.
- W3201602642 hasRelatedWork W2322270513 @default.
- W3201602642 hasRelatedWork W2372447950 @default.
- W3201602642 hasRelatedWork W2378509784 @default.
- W3201602642 hasRelatedWork W2888146468 @default.
- W3201602642 hasRelatedWork W3002669349 @default.
- W3201602642 hasRelatedWork W3177438917 @default.
- W3201602642 hasRelatedWork W3199608561 @default.
- W3201602642 isParatext "false" @default.
- W3201602642 isRetracted "false" @default.
- W3201602642 magId "3201602642" @default.
- W3201602642 workType "article" @default.