Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201606774> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3201606774 abstract "Abstract. Soil fungi play important roles in the functioning of ecosystems, but they are challenging to measure. Using a continental scale dataset, we developed and evaluated a new method to estimate the relative abundance of the dominant phyla and diversity of fungi in Australian soil. The method relies on the development of spectro-transfer functions with state-of-the-art machine learning and using publicly available data on soil and environmental proxies for edaphic, climatic, biotic and topographic factors, and visible--near infrared (vis–NIR) wavelengths, to estimate the relative abundances of the Ascomycota, Basidiomycota, Glomeromycota, Mortierellomycota and Mucoromycota and community diversity measured with the abundance-based coverage estimator (ACE) index. The machine learning algorithms tested were partial least squares regression (PLSR), random forest (RF), Cubist, support vector machines (SVM), Gaussian process regression (GPR), XG-boost (XGB) and one-dimensional convolutional neural networks (1D-CNNs). The spectro-transfer functions were validated with a 10-fold cross-validation (n = 577). The 1D-CNNs outperformed the other algorithms and could explain between 45 and 73 % of fungal relative abundance and diversity. The models were interpretable, and showed that soil nutrients, pH, bulk density, an ecosystem water balance (a proxy for aridity) and net primary productivity were important predictors, as were specific vis–NIR wavelengths that correspond to organic functional groups, iron oxide and clay minerals. Estimates of the relative abundance for Mortierellomycota and Mucoromycota produced R2 ≥ 0.60, while estimates of the abundance of the Ascomycota and Basidiomycota produced R2 values of 0.5 and 0.58, respectively. The spectro-transfer functions for the Glomeromycota and diversity were the poorest with R2 values of 0.48 and 0.45, respectively. There is no doubt that the method provides estimates that are less accurate than more direct measurements with conventional molecular approaches. However, once the spectro-transfer functions are developed, they can be used with very little cost, and could serve to supplement the more expensive and laborious molecular approaches for a better understanding of soil fungal abundance and diversity under different agronomic and ecological settings." @default.
- W3201606774 created "2021-09-27" @default.
- W3201606774 creator A5000200922 @default.
- W3201606774 creator A5059979769 @default.
- W3201606774 creator A5065952924 @default.
- W3201606774 creator A5091755587 @default.
- W3201606774 date "2021-09-13" @default.
- W3201606774 modified "2023-10-06" @default.
- W3201606774 title "Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions" @default.
- W3201606774 cites W1592341820 @default.
- W3201606774 cites W164706946 @default.
- W3201606774 cites W1891744174 @default.
- W3201606774 cites W2032518966 @default.
- W3201606774 cites W2041801729 @default.
- W3201606774 cites W2097519578 @default.
- W3201606774 cites W2109771788 @default.
- W3201606774 cites W2123890146 @default.
- W3201606774 cites W2195986191 @default.
- W3201606774 cites W2292439029 @default.
- W3201606774 cites W2399675776 @default.
- W3201606774 cites W2406165027 @default.
- W3201606774 cites W2783192416 @default.
- W3201606774 cites W2806065310 @default.
- W3201606774 cites W2904788106 @default.
- W3201606774 cites W2954343919 @default.
- W3201606774 cites W3010310735 @default.
- W3201606774 cites W3109117043 @default.
- W3201606774 doi "https://doi.org/10.5194/soil-2021-79" @default.
- W3201606774 hasPublicationYear "2021" @default.
- W3201606774 type Work @default.
- W3201606774 sameAs 3201606774 @default.
- W3201606774 citedByCount "0" @default.
- W3201606774 crossrefType "posted-content" @default.
- W3201606774 hasAuthorship W3201606774A5000200922 @default.
- W3201606774 hasAuthorship W3201606774A5059979769 @default.
- W3201606774 hasAuthorship W3201606774A5065952924 @default.
- W3201606774 hasAuthorship W3201606774A5091755587 @default.
- W3201606774 hasBestOaLocation W32016067741 @default.
- W3201606774 hasConcept C122325731 @default.
- W3201606774 hasConcept C152491559 @default.
- W3201606774 hasConcept C18903297 @default.
- W3201606774 hasConcept C30968088 @default.
- W3201606774 hasConcept C39432304 @default.
- W3201606774 hasConcept C53565203 @default.
- W3201606774 hasConcept C77077793 @default.
- W3201606774 hasConcept C86803240 @default.
- W3201606774 hasConceptScore W3201606774C122325731 @default.
- W3201606774 hasConceptScore W3201606774C152491559 @default.
- W3201606774 hasConceptScore W3201606774C18903297 @default.
- W3201606774 hasConceptScore W3201606774C30968088 @default.
- W3201606774 hasConceptScore W3201606774C39432304 @default.
- W3201606774 hasConceptScore W3201606774C53565203 @default.
- W3201606774 hasConceptScore W3201606774C77077793 @default.
- W3201606774 hasConceptScore W3201606774C86803240 @default.
- W3201606774 hasLocation W32016067741 @default.
- W3201606774 hasLocation W32016067742 @default.
- W3201606774 hasOpenAccess W3201606774 @default.
- W3201606774 hasPrimaryLocation W32016067741 @default.
- W3201606774 hasRelatedWork W1521908438 @default.
- W3201606774 hasRelatedWork W1980481787 @default.
- W3201606774 hasRelatedWork W2055366788 @default.
- W3201606774 hasRelatedWork W2101277061 @default.
- W3201606774 hasRelatedWork W2112575482 @default.
- W3201606774 hasRelatedWork W2123247399 @default.
- W3201606774 hasRelatedWork W2140505465 @default.
- W3201606774 hasRelatedWork W2560817989 @default.
- W3201606774 hasRelatedWork W2945704460 @default.
- W3201606774 hasRelatedWork W4235347454 @default.
- W3201606774 isParatext "false" @default.
- W3201606774 isRetracted "false" @default.
- W3201606774 magId "3201606774" @default.
- W3201606774 workType "article" @default.