Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201608086> ?p ?o ?g. }
- W3201608086 endingPage "JM13" @default.
- W3201608086 startingPage "JM1" @default.
- W3201608086 abstract "Parameter estimation in aeromagnetics is an important tool for geologic interpretation. Due to aeromagnetic data being highly prevalent around the world, it can often be used to assist in understanding the geology of an area as a whole or for locating potential areas of further investigation for mineral exploration. Methods that automatically provide information such as the location and depth to the source of anomalies are useful to the interpretation, particularly in areas where a large number of anomalies exist. Unfortunately, many current methods rely on high-order derivatives and are therefore susceptible to noise in the data. Convolutional neural networks (CNNs) are a subset of machine-learning methods that are well-suited to image processing tasks, and they have been shown to be effective at interpreting other geophysical data, such as seismic sections. Following several similar successful approaches, we have developed a CNN methodology for estimating the location and depth of lineament-type anomalies in aeromagnetic maps. To train the CNN model, we used a synthetic aeromagnetic data modeler to vary the relevant physical parameters, and we developed a representative data set of approximately 1.4 million images. These were then used for training classification CNNs, with each class representing a small range of depth values. We first applied the model to a series of difficult synthetic data sets with varying amounts of noise, comparing the results against the tilt-depth method. We then applied the CNN model to a data set from northeastern Ontario, Canada, that contained a dike with known depth that was correctly estimated. This method is shown to be robust to noise, and it can easily be applied to new data sets using the trained model, which has been made publicly available." @default.
- W3201608086 created "2021-09-27" @default.
- W3201608086 creator A5001281501 @default.
- W3201608086 creator A5029372564 @default.
- W3201608086 date "2021-11-11" @default.
- W3201608086 modified "2023-10-17" @default.
- W3201608086 title "Convolutional neural networks applied to the interpretation of lineaments in aeromagnetic data" @default.
- W3201608086 cites W1130715081 @default.
- W3201608086 cites W1492957437 @default.
- W3201608086 cites W1511350229 @default.
- W3201608086 cites W1523493493 @default.
- W3201608086 cites W1574892705 @default.
- W3201608086 cites W1602300752 @default.
- W3201608086 cites W1982863321 @default.
- W3201608086 cites W1986277058 @default.
- W3201608086 cites W2005161417 @default.
- W3201608086 cites W2012701783 @default.
- W3201608086 cites W2017893316 @default.
- W3201608086 cites W2018336295 @default.
- W3201608086 cites W2027447908 @default.
- W3201608086 cites W2037896780 @default.
- W3201608086 cites W2039558214 @default.
- W3201608086 cites W2042758054 @default.
- W3201608086 cites W2046641384 @default.
- W3201608086 cites W2053605825 @default.
- W3201608086 cites W2068358289 @default.
- W3201608086 cites W2071569932 @default.
- W3201608086 cites W2074465312 @default.
- W3201608086 cites W2079895116 @default.
- W3201608086 cites W2084890123 @default.
- W3201608086 cites W2089562659 @default.
- W3201608086 cites W2111200931 @default.
- W3201608086 cites W2115314373 @default.
- W3201608086 cites W2117878873 @default.
- W3201608086 cites W2124418074 @default.
- W3201608086 cites W2125460652 @default.
- W3201608086 cites W2137535864 @default.
- W3201608086 cites W2138291035 @default.
- W3201608086 cites W2149194912 @default.
- W3201608086 cites W2161677843 @default.
- W3201608086 cites W2165795570 @default.
- W3201608086 cites W2170482959 @default.
- W3201608086 cites W2172044679 @default.
- W3201608086 cites W2188702301 @default.
- W3201608086 cites W2208588631 @default.
- W3201608086 cites W2215761914 @default.
- W3201608086 cites W2333043556 @default.
- W3201608086 cites W2340199256 @default.
- W3201608086 cites W2591871565 @default.
- W3201608086 cites W2592797259 @default.
- W3201608086 cites W2619324788 @default.
- W3201608086 cites W2782828336 @default.
- W3201608086 cites W2891932361 @default.
- W3201608086 cites W2899699175 @default.
- W3201608086 cites W2913076562 @default.
- W3201608086 cites W2963294122 @default.
- W3201608086 cites W2968134581 @default.
- W3201608086 cites W2988237773 @default.
- W3201608086 cites W2988868065 @default.
- W3201608086 cites W2990506785 @default.
- W3201608086 cites W2992575897 @default.
- W3201608086 cites W3010677993 @default.
- W3201608086 cites W3084135379 @default.
- W3201608086 cites W3113605993 @default.
- W3201608086 cites W77330845 @default.
- W3201608086 doi "https://doi.org/10.1190/geo2020-0779.1" @default.
- W3201608086 hasPublicationYear "2021" @default.
- W3201608086 type Work @default.
- W3201608086 sameAs 3201608086 @default.
- W3201608086 citedByCount "3" @default.
- W3201608086 countsByYear W32016080862022 @default.
- W3201608086 countsByYear W32016080862023 @default.
- W3201608086 crossrefType "journal-article" @default.
- W3201608086 hasAuthorship W3201608086A5001281501 @default.
- W3201608086 hasAuthorship W3201608086A5029372564 @default.
- W3201608086 hasBestOaLocation W32016080862 @default.
- W3201608086 hasConcept C115961682 @default.
- W3201608086 hasConcept C127313418 @default.
- W3201608086 hasConcept C153180895 @default.
- W3201608086 hasConcept C154945302 @default.
- W3201608086 hasConcept C159985019 @default.
- W3201608086 hasConcept C160920958 @default.
- W3201608086 hasConcept C165205528 @default.
- W3201608086 hasConcept C177264268 @default.
- W3201608086 hasConcept C192562407 @default.
- W3201608086 hasConcept C199360897 @default.
- W3201608086 hasConcept C204323151 @default.
- W3201608086 hasConcept C2524010 @default.
- W3201608086 hasConcept C2779844322 @default.
- W3201608086 hasConcept C33923547 @default.
- W3201608086 hasConcept C41008148 @default.
- W3201608086 hasConcept C527412718 @default.
- W3201608086 hasConcept C58489278 @default.
- W3201608086 hasConcept C77928131 @default.
- W3201608086 hasConcept C81363708 @default.
- W3201608086 hasConcept C92596616 @default.
- W3201608086 hasConcept C99498987 @default.
- W3201608086 hasConceptScore W3201608086C115961682 @default.