Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201612977> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3201612977 abstract "Abstract Accurate knowledge of Pressure-Volume-Temperature (PVT) properties is crucial in reservoir and production engineering computational applications. One of these properties is the oil formation volume factor (Bo), which assumes a significant role in calculating some of the prominent petroleum engineering terms and parameters, such as depletion rate, oil in place, reservoir simulation, material balance equation, well testing, reservoir production calculation, etc. These properties are ideally measured experimentally in the laboratory, based on downhole or recommended surface samples. Faster and cheaper methods are important for real-time decision making and empirically developed correlations are used in the prediction of this property. This work is aimed at developing a more accurate prediction method than the more common methods. The prediction method used is based on a supervised deep neural network to estimate oil formation volume factor at bubble point pressure as a function of gas-oil ratio, gas gravity, specific oil gravity, and reservoir temperature. Deep learning is applied in this paper to address the inaccuracy of empirically derived correlations used for predicting oil formation volume factor. Neural Networks would help us find hidden patterns in the data, which cannot be found otherwise. A multi-layer neural network was used for the prediction via the anaconda programming environment. Two frameworks for modelling data using deep learning viz: TensorFlow and Keras were utilized, and PVT variables selected as input neurons while employing early stopping which uses a part of our data not fed to the model to test its performance to prevent overfitting. In the modelling process, 2994 dataset retrieved from the Niger Delta region was used. The dataset was randomly divided into three parts of which 60% was used for training, 20% for validation, and 20% for testing. The result predicted by the network outperformed existing correlations by the statistical parameters used for the same set of field data. The network has a mean average error of 0.05 which is the lowest when compared to the error generated by other correlation models. The predictive capability of this network is found to be higher than existing models, based on the findings of this work." @default.
- W3201612977 created "2021-09-27" @default.
- W3201612977 creator A5053619640 @default.
- W3201612977 date "2021-09-15" @default.
- W3201612977 modified "2023-09-27" @default.
- W3201612977 title "A Deep Learning Approach for the Prediction of Oil Formation Volume Factor" @default.
- W3201612977 cites W148243001 @default.
- W3201612977 cites W1964868025 @default.
- W3201612977 cites W1970289169 @default.
- W3201612977 cites W1995598995 @default.
- W3201612977 cites W2015675937 @default.
- W3201612977 cites W2018231588 @default.
- W3201612977 cites W2052368800 @default.
- W3201612977 cites W2079493731 @default.
- W3201612977 cites W2084735228 @default.
- W3201612977 cites W2087814009 @default.
- W3201612977 cites W2130928244 @default.
- W3201612977 cites W2328630757 @default.
- W3201612977 cites W2575202854 @default.
- W3201612977 cites W604368492 @default.
- W3201612977 doi "https://doi.org/10.2118/208627-stu" @default.
- W3201612977 hasPublicationYear "2021" @default.
- W3201612977 type Work @default.
- W3201612977 sameAs 3201612977 @default.
- W3201612977 citedByCount "0" @default.
- W3201612977 crossrefType "proceedings-article" @default.
- W3201612977 hasAuthorship W3201612977A5053619640 @default.
- W3201612977 hasConcept C108583219 @default.
- W3201612977 hasConcept C111919701 @default.
- W3201612977 hasConcept C119857082 @default.
- W3201612977 hasConcept C121332964 @default.
- W3201612977 hasConcept C127413603 @default.
- W3201612977 hasConcept C154945302 @default.
- W3201612977 hasConcept C157915830 @default.
- W3201612977 hasConcept C173608175 @default.
- W3201612977 hasConcept C20556612 @default.
- W3201612977 hasConcept C22019652 @default.
- W3201612977 hasConcept C2987168347 @default.
- W3201612977 hasConcept C41008148 @default.
- W3201612977 hasConcept C43785746 @default.
- W3201612977 hasConcept C46262669 @default.
- W3201612977 hasConcept C50644808 @default.
- W3201612977 hasConcept C78762247 @default.
- W3201612977 hasConcept C97355855 @default.
- W3201612977 hasConcept C98045186 @default.
- W3201612977 hasConceptScore W3201612977C108583219 @default.
- W3201612977 hasConceptScore W3201612977C111919701 @default.
- W3201612977 hasConceptScore W3201612977C119857082 @default.
- W3201612977 hasConceptScore W3201612977C121332964 @default.
- W3201612977 hasConceptScore W3201612977C127413603 @default.
- W3201612977 hasConceptScore W3201612977C154945302 @default.
- W3201612977 hasConceptScore W3201612977C157915830 @default.
- W3201612977 hasConceptScore W3201612977C173608175 @default.
- W3201612977 hasConceptScore W3201612977C20556612 @default.
- W3201612977 hasConceptScore W3201612977C22019652 @default.
- W3201612977 hasConceptScore W3201612977C2987168347 @default.
- W3201612977 hasConceptScore W3201612977C41008148 @default.
- W3201612977 hasConceptScore W3201612977C43785746 @default.
- W3201612977 hasConceptScore W3201612977C46262669 @default.
- W3201612977 hasConceptScore W3201612977C50644808 @default.
- W3201612977 hasConceptScore W3201612977C78762247 @default.
- W3201612977 hasConceptScore W3201612977C97355855 @default.
- W3201612977 hasConceptScore W3201612977C98045186 @default.
- W3201612977 hasLocation W32016129771 @default.
- W3201612977 hasOpenAccess W3201612977 @default.
- W3201612977 hasPrimaryLocation W32016129771 @default.
- W3201612977 hasRelatedWork W2989932438 @default.
- W3201612977 hasRelatedWork W3011996705 @default.
- W3201612977 hasRelatedWork W3099765033 @default.
- W3201612977 hasRelatedWork W3186840088 @default.
- W3201612977 hasRelatedWork W3186919929 @default.
- W3201612977 hasRelatedWork W4285802257 @default.
- W3201612977 hasRelatedWork W4287064118 @default.
- W3201612977 hasRelatedWork W4313289428 @default.
- W3201612977 hasRelatedWork W4361732492 @default.
- W3201612977 hasRelatedWork W4362499066 @default.
- W3201612977 isParatext "false" @default.
- W3201612977 isRetracted "false" @default.
- W3201612977 magId "3201612977" @default.
- W3201612977 workType "article" @default.