Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201617817> ?p ?o ?g. }
- W3201617817 endingPage "3106" @default.
- W3201617817 startingPage "3094" @default.
- W3201617817 abstract "With the rapid advance of Internet of Things (IoT), it is difficult for cloud-centric computing to meet the requirements of low latency and ease of use. As an open and distributed system, edge computing integrates computing, networking, storage, and applications. It provides intelligent services on the edge of an IoT. The edge network is composed of various wireless and wired networks, and the computing and storage resources of edge nodes are limited. These conditions make the edge network expose to a variety of cyber attacks. Additionally, it is difficult for an IoT edge node to support large-scale network data collection and detection for IoT security. Although big data-enabled intrusion detection algorithms can ensure the high accuracy of intrusion detection systems, it is stressful for resource-limited edge nodes to implement those algorithms in IoT. Motivated by these challenges, we propose an intelligent intrusion detection algorithm implemented by big data mining based on a fuzzy rough set, generative adversarial network (GAN), and convolutional neural network (CNN). In our method, we first propose a fuzzy rough set-based algorithm to perform feature selection for big data via IoT. Then, we take advantage of the efficient feature extraction capabilities of CNN for implementing intrusion detection based on selected features. Furthermore, after combining CNN and GAN, we propose an intelligent algorithm to realize intrusion detection in a variety of scenarios. Finally, the proposed method is compared with existing methods for evaluation. Simulation results show that our method has up to 4% higher accuracy than existing methods." @default.
- W3201617817 created "2021-09-27" @default.
- W3201617817 creator A5010150000 @default.
- W3201617817 creator A5034529593 @default.
- W3201617817 creator A5034929846 @default.
- W3201617817 creator A5051518571 @default.
- W3201617817 creator A5089177690 @default.
- W3201617817 date "2023-02-15" @default.
- W3201617817 modified "2023-10-15" @default.
- W3201617817 title "Intelligent Intrusion Detection for Internet of Things Security: A Deep Convolutional Generative Adversarial Network-Enabled Approach" @default.
- W3201617817 cites W2032172961 @default.
- W3201617817 cites W2416799949 @default.
- W3201617817 cites W2573908344 @default.
- W3201617817 cites W2593932391 @default.
- W3201617817 cites W2604974201 @default.
- W3201617817 cites W2751904527 @default.
- W3201617817 cites W2767072011 @default.
- W3201617817 cites W2783741806 @default.
- W3201617817 cites W2790832484 @default.
- W3201617817 cites W2888162750 @default.
- W3201617817 cites W2914200181 @default.
- W3201617817 cites W2928675906 @default.
- W3201617817 cites W2938939740 @default.
- W3201617817 cites W2943542376 @default.
- W3201617817 cites W2944017292 @default.
- W3201617817 cites W2971076825 @default.
- W3201617817 cites W2984128863 @default.
- W3201617817 cites W2995026345 @default.
- W3201617817 cites W3014778812 @default.
- W3201617817 cites W3020067472 @default.
- W3201617817 cites W3020434223 @default.
- W3201617817 cites W3024476475 @default.
- W3201617817 cites W3030941702 @default.
- W3201617817 cites W3035366542 @default.
- W3201617817 cites W3038077692 @default.
- W3201617817 cites W3040916395 @default.
- W3201617817 cites W3041161530 @default.
- W3201617817 cites W3043459281 @default.
- W3201617817 cites W3048313003 @default.
- W3201617817 cites W3048592926 @default.
- W3201617817 cites W3086579950 @default.
- W3201617817 cites W3093606573 @default.
- W3201617817 cites W3097056170 @default.
- W3201617817 cites W3102893897 @default.
- W3201617817 cites W3117755275 @default.
- W3201617817 cites W3119160111 @default.
- W3201617817 cites W3120795858 @default.
- W3201617817 cites W3133177552 @default.
- W3201617817 cites W3157891444 @default.
- W3201617817 cites W3162584529 @default.
- W3201617817 cites W3167293954 @default.
- W3201617817 cites W3176980958 @default.
- W3201617817 cites W3183053987 @default.
- W3201617817 doi "https://doi.org/10.1109/jiot.2021.3112159" @default.
- W3201617817 hasPublicationYear "2023" @default.
- W3201617817 type Work @default.
- W3201617817 sameAs 3201617817 @default.
- W3201617817 citedByCount "9" @default.
- W3201617817 countsByYear W32016178172022 @default.
- W3201617817 countsByYear W32016178172023 @default.
- W3201617817 crossrefType "journal-article" @default.
- W3201617817 hasAuthorship W3201617817A5010150000 @default.
- W3201617817 hasAuthorship W3201617817A5034529593 @default.
- W3201617817 hasAuthorship W3201617817A5034929846 @default.
- W3201617817 hasAuthorship W3201617817A5051518571 @default.
- W3201617817 hasAuthorship W3201617817A5089177690 @default.
- W3201617817 hasConcept C111919701 @default.
- W3201617817 hasConcept C120314980 @default.
- W3201617817 hasConcept C124101348 @default.
- W3201617817 hasConcept C127413603 @default.
- W3201617817 hasConcept C154945302 @default.
- W3201617817 hasConcept C162307627 @default.
- W3201617817 hasConcept C182590292 @default.
- W3201617817 hasConcept C2778456923 @default.
- W3201617817 hasConcept C31258907 @default.
- W3201617817 hasConcept C35525427 @default.
- W3201617817 hasConcept C41008148 @default.
- W3201617817 hasConcept C62611344 @default.
- W3201617817 hasConcept C66938386 @default.
- W3201617817 hasConcept C75684735 @default.
- W3201617817 hasConcept C79974875 @default.
- W3201617817 hasConcept C81363708 @default.
- W3201617817 hasConceptScore W3201617817C111919701 @default.
- W3201617817 hasConceptScore W3201617817C120314980 @default.
- W3201617817 hasConceptScore W3201617817C124101348 @default.
- W3201617817 hasConceptScore W3201617817C127413603 @default.
- W3201617817 hasConceptScore W3201617817C154945302 @default.
- W3201617817 hasConceptScore W3201617817C162307627 @default.
- W3201617817 hasConceptScore W3201617817C182590292 @default.
- W3201617817 hasConceptScore W3201617817C2778456923 @default.
- W3201617817 hasConceptScore W3201617817C31258907 @default.
- W3201617817 hasConceptScore W3201617817C35525427 @default.
- W3201617817 hasConceptScore W3201617817C41008148 @default.
- W3201617817 hasConceptScore W3201617817C62611344 @default.
- W3201617817 hasConceptScore W3201617817C66938386 @default.
- W3201617817 hasConceptScore W3201617817C75684735 @default.
- W3201617817 hasConceptScore W3201617817C79974875 @default.
- W3201617817 hasConceptScore W3201617817C81363708 @default.