Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201623453> ?p ?o ?g. }
- W3201623453 endingPage "104754" @default.
- W3201623453 startingPage "104754" @default.
- W3201623453 abstract "We investigate the quasi-static growth of a fluid-driven frictional shear crack that propagates in mixed mode (II+III) on a planar fault interface that separates two identical half-spaces of a three-dimensional solid. The fault interface is characterized by a shear strength equal to the product of a constant friction coefficient and the local effective normal stress. Fluid is injected into the fault interface and two different injection scenarios are considered: injection at constant volume rate and injection at constant pressure. We derive analytical solutions for circular ruptures which occur in the limit of a Poisson’s ratio ν=0 and solve numerically for the more general case in which the rupture shape is unknown (ν≠0). For an injection at constant volume rate, the fault slip growth is self-similar. The rupture radius (ν=0) expands as R(t)=λL(t), where L(t) is the nominal position of the fluid pressure front and λ is an amplification factor that is a known function of a unique dimensionless parameter T. The latter is defined as the ratio between the distance to failure under ambient conditions and the strength of the injection. Whenever λ>1, the rupture front outpaces the fluid pressure front. For ν≠0, the rupture shape is quasi-elliptical. The aspect ratio is upper and lower bounded by 1/(1−ν) and (3−ν)/(3−2ν), for the limiting cases of critically stressed faults (λ≫1, T≪1) and marginally pressurized faults (λ≪1, T≫1), respectively. Moreover, the evolution of the rupture area is independent of the Poisson’s ratio and grows simply as Ar(t)=4παλ2t, where α is the fault hydraulic diffusivity. For injection at constant pressure, the fault slip growth is not self-similar: the rupture front evolves at large times as ∝(αt)(1−T)/2 with T between 0 and 1. The frictional rupture moves at most diffusively (∝αt) when the fault is critically stressed, but in general propagates slower than the fluid pressure front. Yet in some conditions, the rupture front outpaces the fluid pressure front. The latter will eventually catch the former if injection is sustained for sufficient time. Our findings provide a basic understanding on how stable (aseismic) ruptures propagate in response to fluid injection in 3-D. Notably, since aseismic ruptures driven by injection at constant rate expand proportionally to the squared root of time, seismicity clouds that are commonly interpreted to be controlled by the direct effect of fluid pressure increase might be controlled by the stress transfer of a propagating aseismic rupture instead. We also demonstrate that the aseismic moment M0 scales to the injected fluid volume V as M0∝V3/2." @default.
- W3201623453 created "2021-09-27" @default.
- W3201623453 creator A5009816964 @default.
- W3201623453 creator A5018643908 @default.
- W3201623453 creator A5057687554 @default.
- W3201623453 creator A5089210006 @default.
- W3201623453 date "2022-03-01" @default.
- W3201623453 modified "2023-09-30" @default.
- W3201623453 title "Three-dimensional fluid-driven stable frictional ruptures" @default.
- W3201623453 cites W1923534505 @default.
- W3201623453 cites W1980947846 @default.
- W3201623453 cites W1985082252 @default.
- W3201623453 cites W1986505733 @default.
- W3201623453 cites W1988136733 @default.
- W3201623453 cites W1996586016 @default.
- W3201623453 cites W2001650739 @default.
- W3201623453 cites W2012166991 @default.
- W3201623453 cites W2013388944 @default.
- W3201623453 cites W2016435379 @default.
- W3201623453 cites W2019935798 @default.
- W3201623453 cites W2038092840 @default.
- W3201623453 cites W2045601571 @default.
- W3201623453 cites W2046331128 @default.
- W3201623453 cites W2052192375 @default.
- W3201623453 cites W2054100850 @default.
- W3201623453 cites W2057342974 @default.
- W3201623453 cites W2063240270 @default.
- W3201623453 cites W2100770980 @default.
- W3201623453 cites W2106744270 @default.
- W3201623453 cites W2108523563 @default.
- W3201623453 cites W2122910736 @default.
- W3201623453 cites W2149592092 @default.
- W3201623453 cites W2149608188 @default.
- W3201623453 cites W2161923594 @default.
- W3201623453 cites W2165747329 @default.
- W3201623453 cites W2229874344 @default.
- W3201623453 cites W2311485052 @default.
- W3201623453 cites W2332484477 @default.
- W3201623453 cites W2345176646 @default.
- W3201623453 cites W2441206244 @default.
- W3201623453 cites W2553168182 @default.
- W3201623453 cites W2599486791 @default.
- W3201623453 cites W2727588656 @default.
- W3201623453 cites W2744070684 @default.
- W3201623453 cites W2762996942 @default.
- W3201623453 cites W2778756103 @default.
- W3201623453 cites W2806716989 @default.
- W3201623453 cites W2889373517 @default.
- W3201623453 cites W2920852260 @default.
- W3201623453 cites W2921982108 @default.
- W3201623453 cites W2943015973 @default.
- W3201623453 cites W2965953910 @default.
- W3201623453 cites W2970330873 @default.
- W3201623453 cites W3004773285 @default.
- W3201623453 cites W3035819333 @default.
- W3201623453 cites W3048755084 @default.
- W3201623453 cites W3087807372 @default.
- W3201623453 cites W3091953864 @default.
- W3201623453 cites W3100437239 @default.
- W3201623453 cites W3138313841 @default.
- W3201623453 cites W3198828621 @default.
- W3201623453 cites W4230216479 @default.
- W3201623453 cites W85400240 @default.
- W3201623453 doi "https://doi.org/10.1016/j.jmps.2021.104754" @default.
- W3201623453 hasPublicationYear "2022" @default.
- W3201623453 type Work @default.
- W3201623453 sameAs 3201623453 @default.
- W3201623453 citedByCount "19" @default.
- W3201623453 countsByYear W32016234532022 @default.
- W3201623453 countsByYear W32016234532023 @default.
- W3201623453 crossrefType "journal-article" @default.
- W3201623453 hasAuthorship W3201623453A5009816964 @default.
- W3201623453 hasAuthorship W3201623453A5018643908 @default.
- W3201623453 hasAuthorship W3201623453A5057687554 @default.
- W3201623453 hasAuthorship W3201623453A5089210006 @default.
- W3201623453 hasBestOaLocation W32016234531 @default.
- W3201623453 hasConcept C100906024 @default.
- W3201623453 hasConcept C105795698 @default.
- W3201623453 hasConcept C121332964 @default.
- W3201623453 hasConcept C159985019 @default.
- W3201623453 hasConcept C178635117 @default.
- W3201623453 hasConcept C192562407 @default.
- W3201623453 hasConcept C195268267 @default.
- W3201623453 hasConcept C199360897 @default.
- W3201623453 hasConcept C24872484 @default.
- W3201623453 hasConcept C2777027219 @default.
- W3201623453 hasConcept C33923547 @default.
- W3201623453 hasConcept C38652104 @default.
- W3201623453 hasConcept C41008148 @default.
- W3201623453 hasConcept C57879066 @default.
- W3201623453 hasConcept C96035792 @default.
- W3201623453 hasConcept C97355855 @default.
- W3201623453 hasConceptScore W3201623453C100906024 @default.
- W3201623453 hasConceptScore W3201623453C105795698 @default.
- W3201623453 hasConceptScore W3201623453C121332964 @default.
- W3201623453 hasConceptScore W3201623453C159985019 @default.
- W3201623453 hasConceptScore W3201623453C178635117 @default.
- W3201623453 hasConceptScore W3201623453C192562407 @default.