Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201623794> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3201623794 abstract "Abstract This study investigated the ability to produce accurate multiphase flow profiles simulating the response of producing reservoirs, using Generative Deep Learning (GDL) methods. Historical production data from numerical simulators were used to train a GDL model that was then used to predict the output of new wells in unseen locations. This work describes a procedure in which data analysis techniques are used to gain insight into reservoir flow behavior at a field level based on existing historical data. The procedure includes clustering, dimensionality reduction, correlation, in addition to novel interpretation methodologies that synthesize the results from reservoir simulation output, characterizing flow conditions. The insight was then used to build and train a GDL algorithm that reproduces the multiphase reservoir behavior for unseen operational conditions with high accuracy. The trained algorithm can be used to further generate new predictions of the reservoir response under operational conditions for which we do not have previous examples in the training data set. We found that the GDL algorithm can be used as a robust multiphase flow simulator. In addition, we showed that the physics of flow can be captured and manipulated in the GDL latent space after training to reproduce different physical effects that did not exist in the original training data set. Applying the methodology to the problem of determining multiphase production rate from new producing wells in undrilled locations showed positive results. The methodology was tested successfully in predicting multiphase production under different scenarios including multiwell channelized and heterogeneous reservoirs. Comparison with other shallow supervised algorithms demonstrated improvements realized by the proposed methodology, compared to existing methods. The study developed a novel methodology to interpret both data and GDL algorithms, geared towards improving reservoir management. The method was able to predict the performance of new wells in previously undrilled locations without using a reservoir simulator." @default.
- W3201623794 created "2021-09-27" @default.
- W3201623794 creator A5009160502 @default.
- W3201623794 creator A5053482507 @default.
- W3201623794 date "2021-09-15" @default.
- W3201623794 modified "2023-09-27" @default.
- W3201623794 title "Simulating Multiphase Flow in Reservoirs with Generative Deep Learning" @default.
- W3201623794 cites W1977279671 @default.
- W3201623794 cites W2064675550 @default.
- W3201623794 cites W2070869225 @default.
- W3201623794 cites W2080829915 @default.
- W3201623794 cites W2157331557 @default.
- W3201623794 cites W2749072391 @default.
- W3201623794 cites W2784733489 @default.
- W3201623794 cites W2891219912 @default.
- W3201623794 cites W2968989248 @default.
- W3201623794 cites W3015570394 @default.
- W3201623794 cites W3037649759 @default.
- W3201623794 cites W3100968477 @default.
- W3201623794 cites W4308067211 @default.
- W3201623794 cites W4312921313 @default.
- W3201623794 doi "https://doi.org/10.2118/206126-ms" @default.
- W3201623794 hasPublicationYear "2021" @default.
- W3201623794 type Work @default.
- W3201623794 sameAs 3201623794 @default.
- W3201623794 citedByCount "0" @default.
- W3201623794 crossrefType "proceedings-article" @default.
- W3201623794 hasAuthorship W3201623794A5009160502 @default.
- W3201623794 hasAuthorship W3201623794A5053482507 @default.
- W3201623794 hasConcept C111030470 @default.
- W3201623794 hasConcept C119857082 @default.
- W3201623794 hasConcept C121332964 @default.
- W3201623794 hasConcept C127413603 @default.
- W3201623794 hasConcept C154945302 @default.
- W3201623794 hasConcept C177264268 @default.
- W3201623794 hasConcept C199360897 @default.
- W3201623794 hasConcept C2524010 @default.
- W3201623794 hasConcept C2778668878 @default.
- W3201623794 hasConcept C2779379648 @default.
- W3201623794 hasConcept C33923547 @default.
- W3201623794 hasConcept C38349280 @default.
- W3201623794 hasConcept C41008148 @default.
- W3201623794 hasConcept C51889082 @default.
- W3201623794 hasConcept C58489278 @default.
- W3201623794 hasConcept C62520636 @default.
- W3201623794 hasConcept C70518039 @default.
- W3201623794 hasConcept C73555534 @default.
- W3201623794 hasConcept C76155785 @default.
- W3201623794 hasConcept C78762247 @default.
- W3201623794 hasConceptScore W3201623794C111030470 @default.
- W3201623794 hasConceptScore W3201623794C119857082 @default.
- W3201623794 hasConceptScore W3201623794C121332964 @default.
- W3201623794 hasConceptScore W3201623794C127413603 @default.
- W3201623794 hasConceptScore W3201623794C154945302 @default.
- W3201623794 hasConceptScore W3201623794C177264268 @default.
- W3201623794 hasConceptScore W3201623794C199360897 @default.
- W3201623794 hasConceptScore W3201623794C2524010 @default.
- W3201623794 hasConceptScore W3201623794C2778668878 @default.
- W3201623794 hasConceptScore W3201623794C2779379648 @default.
- W3201623794 hasConceptScore W3201623794C33923547 @default.
- W3201623794 hasConceptScore W3201623794C38349280 @default.
- W3201623794 hasConceptScore W3201623794C41008148 @default.
- W3201623794 hasConceptScore W3201623794C51889082 @default.
- W3201623794 hasConceptScore W3201623794C58489278 @default.
- W3201623794 hasConceptScore W3201623794C62520636 @default.
- W3201623794 hasConceptScore W3201623794C70518039 @default.
- W3201623794 hasConceptScore W3201623794C73555534 @default.
- W3201623794 hasConceptScore W3201623794C76155785 @default.
- W3201623794 hasConceptScore W3201623794C78762247 @default.
- W3201623794 hasLocation W32016237941 @default.
- W3201623794 hasOpenAccess W3201623794 @default.
- W3201623794 hasPrimaryLocation W32016237941 @default.
- W3201623794 hasRelatedWork W2003887524 @default.
- W3201623794 hasRelatedWork W2611307339 @default.
- W3201623794 hasRelatedWork W2922457425 @default.
- W3201623794 hasRelatedWork W3123566319 @default.
- W3201623794 hasRelatedWork W4226153255 @default.
- W3201623794 hasRelatedWork W4250304930 @default.
- W3201623794 hasRelatedWork W4254253457 @default.
- W3201623794 hasRelatedWork W4312907272 @default.
- W3201623794 hasRelatedWork W2087197267 @default.
- W3201623794 hasRelatedWork W3112429549 @default.
- W3201623794 isParatext "false" @default.
- W3201623794 isRetracted "false" @default.
- W3201623794 magId "3201623794" @default.
- W3201623794 workType "article" @default.