Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201624903> ?p ?o ?g. }
- W3201624903 endingPage "611" @default.
- W3201624903 startingPage "599" @default.
- W3201624903 abstract "Recent analysis methods can capture nonlinear interactions between brain regions. However, noise sources might induce spurious nonlinear relationships between the responses in different regions. Previous research has demonstrated that traditional denoising techniques effectively remove noise-induced linear relationships between brain areas, but it is unknown whether these techniques can remove spurious nonlinear relationships. To address this question, we analyzed fMRI responses while participants watched the film Forrest Gump. We tested whether nonlinear Multivariate Pattern Dependence Networks (MVPN) outperform linear MVPN in non-denoised data, and whether this difference is reduced after CompCor denoising. Whereas nonlinear MVPN outperformed linear MVPN in the non-denoised data, denoising removed these nonlinear interactions. We replicated our results using different neural network architectures as the bases of MVPN, different activation functions (ReLU and sigmoid), different dimensionality reduction techniques for CompCor (PCA and ICA), and multiple datasets, demonstrating that CompCor’s ability to remove nonlinear interactions is robust across these analysis choices and across different groups of participants. Finally, we asked whether information contributing to the removal of nonlinear interactions is localized to specific anatomical regions of no interest or to specific principal components. We denoised the data 8 separate times by regressing out 5 principal components extracted from combined white matter (WM) and cerebrospinal fluid (CSF), each of the 5 components separately, 5 components extracted from WM only, and 5 components extracted solely from CSF. In all cases, denoising was sufficient to remove the observed nonlinear interactions." @default.
- W3201624903 created "2021-09-27" @default.
- W3201624903 creator A5010422118 @default.
- W3201624903 creator A5018336340 @default.
- W3201624903 creator A5022594974 @default.
- W3201624903 creator A5066819788 @default.
- W3201624903 date "2021-09-14" @default.
- W3201624903 modified "2023-10-13" @default.
- W3201624903 title "Controlling for Spurious Nonlinear Dependence in Connectivity Analyses" @default.
- W3201624903 cites W1978660262 @default.
- W3201624903 cites W1978694642 @default.
- W3201624903 cites W1980527160 @default.
- W3201624903 cites W1987010653 @default.
- W3201624903 cites W1990134753 @default.
- W3201624903 cites W1996624560 @default.
- W3201624903 cites W2005238835 @default.
- W3201624903 cites W2011034179 @default.
- W3201624903 cites W2012237386 @default.
- W3201624903 cites W2019250649 @default.
- W3201624903 cites W2025759276 @default.
- W3201624903 cites W2029461455 @default.
- W3201624903 cites W2033865693 @default.
- W3201624903 cites W2035436068 @default.
- W3201624903 cites W2040036684 @default.
- W3201624903 cites W2047453615 @default.
- W3201624903 cites W2048857243 @default.
- W3201624903 cites W2050840442 @default.
- W3201624903 cites W2052644075 @default.
- W3201624903 cites W2055014790 @default.
- W3201624903 cites W2055632453 @default.
- W3201624903 cites W2058616551 @default.
- W3201624903 cites W2065895453 @default.
- W3201624903 cites W2084518818 @default.
- W3201624903 cites W2095978766 @default.
- W3201624903 cites W2099660465 @default.
- W3201624903 cites W2100495367 @default.
- W3201624903 cites W2106990053 @default.
- W3201624903 cites W2110611514 @default.
- W3201624903 cites W2130010412 @default.
- W3201624903 cites W2132175842 @default.
- W3201624903 cites W2136573752 @default.
- W3201624903 cites W2137376190 @default.
- W3201624903 cites W2139447054 @default.
- W3201624903 cites W2144617303 @default.
- W3201624903 cites W2149194912 @default.
- W3201624903 cites W2168834656 @default.
- W3201624903 cites W2339129891 @default.
- W3201624903 cites W2512138671 @default.
- W3201624903 cites W2532664187 @default.
- W3201624903 cites W2536613192 @default.
- W3201624903 cites W2537382818 @default.
- W3201624903 cites W2560079766 @default.
- W3201624903 cites W2560204497 @default.
- W3201624903 cites W2568162413 @default.
- W3201624903 cites W2597348720 @default.
- W3201624903 cites W2768646276 @default.
- W3201624903 cites W2782132857 @default.
- W3201624903 cites W2793274620 @default.
- W3201624903 cites W2900732401 @default.
- W3201624903 cites W2950844668 @default.
- W3201624903 cites W2951583631 @default.
- W3201624903 cites W2953090092 @default.
- W3201624903 cites W2963446712 @default.
- W3201624903 cites W2977202771 @default.
- W3201624903 cites W2986195400 @default.
- W3201624903 cites W2998650151 @default.
- W3201624903 cites W3020268474 @default.
- W3201624903 cites W3105678571 @default.
- W3201624903 cites W3111278072 @default.
- W3201624903 cites W4235770099 @default.
- W3201624903 cites W4312467853 @default.
- W3201624903 doi "https://doi.org/10.1007/s12021-021-09540-9" @default.
- W3201624903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34519963" @default.
- W3201624903 hasPublicationYear "2021" @default.
- W3201624903 type Work @default.
- W3201624903 sameAs 3201624903 @default.
- W3201624903 citedByCount "4" @default.
- W3201624903 countsByYear W32016249032021 @default.
- W3201624903 countsByYear W32016249032022 @default.
- W3201624903 countsByYear W32016249032023 @default.
- W3201624903 crossrefType "journal-article" @default.
- W3201624903 hasAuthorship W3201624903A5010422118 @default.
- W3201624903 hasAuthorship W3201624903A5018336340 @default.
- W3201624903 hasAuthorship W3201624903A5022594974 @default.
- W3201624903 hasAuthorship W3201624903A5066819788 @default.
- W3201624903 hasBestOaLocation W32016249032 @default.
- W3201624903 hasConcept C115961682 @default.
- W3201624903 hasConcept C119857082 @default.
- W3201624903 hasConcept C121332964 @default.
- W3201624903 hasConcept C151876577 @default.
- W3201624903 hasConcept C153180895 @default.
- W3201624903 hasConcept C154945302 @default.
- W3201624903 hasConcept C158622935 @default.
- W3201624903 hasConcept C163294075 @default.
- W3201624903 hasConcept C27438332 @default.
- W3201624903 hasConcept C33923547 @default.
- W3201624903 hasConcept C41008148 @default.
- W3201624903 hasConcept C50644808 @default.