Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201626918> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3201626918 abstract "Accurate short-term load forecasting is essential to the modern power system and smart grids; the utility can better implement demand-side management and operate the power system stable with a reliable forecasting system. The load demand contains a variety of different load components, and different loads operate with different frequencies. Conventional load forecasting models (linear regression (LR), Auto-Regressive Integrated Moving Average (ARIMA), deep neural network, etc.) ignore frequency domain and can only use time-domain load demand as inputs. To make full use of both time domain and frequency domain features of the load demand, a hybrid component decomposition and deep neural network load forecasting model is proposed in this paper. The proposed model first filters noises via wavelet-based denoising technique, then decomposes the original load demand into several sublayers to show the frequency features while the time domain information is preserved as well. Then bidirectional LSTM model is trained for each sub-layer independently. To better tunning the hyperparameters, a Bayesian hyperparameter optimization algorithm is adopted in this paper. Three case studies are designed to evaluate the performance of the proposed model. From the results, it is found that the proposed model improves RMSE by 66.59% and 84.06%, comparing to other load forecasting models.<br>" @default.
- W3201626918 created "2021-09-27" @default.
- W3201626918 creator A5032771817 @default.
- W3201626918 creator A5036734913 @default.
- W3201626918 creator A5063880073 @default.
- W3201626918 creator A5079590996 @default.
- W3201626918 date "2021-09-10" @default.
- W3201626918 modified "2023-10-18" @default.
- W3201626918 title "Short-Term Load Forecasting Method based on Empirical Wavelet Decomposition and BLSTM Neural Networks" @default.
- W3201626918 doi "https://doi.org/10.36227/techrxiv.16570995.v1" @default.
- W3201626918 hasPublicationYear "2021" @default.
- W3201626918 type Work @default.
- W3201626918 sameAs 3201626918 @default.
- W3201626918 citedByCount "0" @default.
- W3201626918 crossrefType "posted-content" @default.
- W3201626918 hasAuthorship W3201626918A5032771817 @default.
- W3201626918 hasAuthorship W3201626918A5036734913 @default.
- W3201626918 hasAuthorship W3201626918A5063880073 @default.
- W3201626918 hasAuthorship W3201626918A5079590996 @default.
- W3201626918 hasBestOaLocation W32016269181 @default.
- W3201626918 hasConcept C103824480 @default.
- W3201626918 hasConcept C119857082 @default.
- W3201626918 hasConcept C121332964 @default.
- W3201626918 hasConcept C127413603 @default.
- W3201626918 hasConcept C151406439 @default.
- W3201626918 hasConcept C154945302 @default.
- W3201626918 hasConcept C163258240 @default.
- W3201626918 hasConcept C19118579 @default.
- W3201626918 hasConcept C193809577 @default.
- W3201626918 hasConcept C21547014 @default.
- W3201626918 hasConcept C24338571 @default.
- W3201626918 hasConcept C31972630 @default.
- W3201626918 hasConcept C41008148 @default.
- W3201626918 hasConcept C47432892 @default.
- W3201626918 hasConcept C50644808 @default.
- W3201626918 hasConcept C62520636 @default.
- W3201626918 hasConcept C8642999 @default.
- W3201626918 hasConcept C89227174 @default.
- W3201626918 hasConceptScore W3201626918C103824480 @default.
- W3201626918 hasConceptScore W3201626918C119857082 @default.
- W3201626918 hasConceptScore W3201626918C121332964 @default.
- W3201626918 hasConceptScore W3201626918C127413603 @default.
- W3201626918 hasConceptScore W3201626918C151406439 @default.
- W3201626918 hasConceptScore W3201626918C154945302 @default.
- W3201626918 hasConceptScore W3201626918C163258240 @default.
- W3201626918 hasConceptScore W3201626918C19118579 @default.
- W3201626918 hasConceptScore W3201626918C193809577 @default.
- W3201626918 hasConceptScore W3201626918C21547014 @default.
- W3201626918 hasConceptScore W3201626918C24338571 @default.
- W3201626918 hasConceptScore W3201626918C31972630 @default.
- W3201626918 hasConceptScore W3201626918C41008148 @default.
- W3201626918 hasConceptScore W3201626918C47432892 @default.
- W3201626918 hasConceptScore W3201626918C50644808 @default.
- W3201626918 hasConceptScore W3201626918C62520636 @default.
- W3201626918 hasConceptScore W3201626918C8642999 @default.
- W3201626918 hasConceptScore W3201626918C89227174 @default.
- W3201626918 hasLocation W32016269181 @default.
- W3201626918 hasLocation W32016269182 @default.
- W3201626918 hasOpenAccess W3201626918 @default.
- W3201626918 hasPrimaryLocation W32016269181 @default.
- W3201626918 hasRelatedWork W2024149974 @default.
- W3201626918 hasRelatedWork W2143641989 @default.
- W3201626918 hasRelatedWork W2237397486 @default.
- W3201626918 hasRelatedWork W2246925888 @default.
- W3201626918 hasRelatedWork W2370053451 @default.
- W3201626918 hasRelatedWork W2370615679 @default.
- W3201626918 hasRelatedWork W2542685162 @default.
- W3201626918 hasRelatedWork W2754837355 @default.
- W3201626918 hasRelatedWork W2810484613 @default.
- W3201626918 hasRelatedWork W3189549537 @default.
- W3201626918 isParatext "false" @default.
- W3201626918 isRetracted "false" @default.
- W3201626918 magId "3201626918" @default.
- W3201626918 workType "article" @default.