Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201631844> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3201631844 endingPage "2254" @default.
- W3201631844 startingPage "2249" @default.
- W3201631844 abstract "NanomedicineVol. 16, No. 25 CommentaryNanoparticle–biological interactions: the renaissance of bionomics in the myriad nanomedical technologiesPritam Kumar Panda, Suresh K Verma & Mrutyunjay SuarPritam Kumar Panda https://orcid.org/0000-0003-4879-2302Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, SwedenSearch for more papers by this author, Suresh K Verma *Author for correspondence: E-mail Address: suresh.verma@physics.uu.sehttps://orcid.org/0000-0003-1029-9766Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, SwedenSchool of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, IndiaSearch for more papers by this author & Mrutyunjay Suar **Author for correspondence: E-mail Address: msuar@kiitbiotech.ac.inhttps://orcid.org/0000-0003-4815-5477School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, IndiaSearch for more papers by this authorPublished Online:21 Sep 2021https://doi.org/10.2217/nnm-2021-0174AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: bio interactionsbionomicsnano–bio interfacenanomaterialsnanomedicinenanotechnologyprotein coronaReferences1. Bondarenko O, Mortimer M, Kahru A et al. Nanotoxicology and nanomedicine: the yin and yang of nano–bio interactions for the new decade. Nano Today 39, 101184 (2021).Crossref, CAS, Google Scholar2. Nel AE, Mädler L, Velegol D et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8(7), 543–557 (2009).Crossref, Medline, CAS, Google Scholar3. Mansoori GA, Fauzi Soelaiman TA. Nanotechnology – an introduction for the standards community. J. ASTM Int. 2(6), 1–22 (2005).Google Scholar4. Bawa R, Bawa SR, Maebius SB, Flynn T, Wei C. Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 1(2), 150–158 (2005).Crossref, Medline, CAS, Google Scholar5. Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012).Crossref, Medline, CAS, Google Scholar6. Wang Y, Cai R, Chen C. The nano–bio interactions of nanomedicines: understanding the biochemical driving forces and redox reactions. Acc. Chem. Res. 52(6), 1507–1518 (2019).Crossref, Medline, CAS, Google Scholar7. Ni B, Wang X. Face the edges: catalytic active sites of nanomaterials. Adv. Sci. 2(7), 1500085 (2015).Crossref, Google Scholar8. Carofiglio M, Barui S, Cauda V, Laurenti M. Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Appl. Sci. (Basel) 10(15), 5194 (2020).Crossref, Medline, CAS, Google Scholar9. Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine. Genes Dev. 27(22), 2397–2408 (2013).Crossref, Medline, CAS, Google Scholar10. Tian X, Chong Y, Ge C. Understanding the nano–bio interactions and the corresponding biological responses. Front. Chem. 8, 446 (2020).Crossref, Medline, CAS, Google Scholar11. Jin JF, Zhu LL, Chen M et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer. Adherence 9, 923–942 (2015).Medline, Google Scholar12. Gibbs DD, Pyle L, Allen M et al. A Phase I dose-finding study of a combination of pegylated liposomal doxorubicin (Doxil), carboplatin and paclitaxel in ovarian cancer. Br. J. Cancer 86(9), 1379–1384 (2002).Crossref, Medline, CAS, Google Scholar13. Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 23(9), 3319–3329 (2016).Crossref, Medline, CAS, Google Scholar14. Verma SK, Jha E, Panda PK, Thirumurugan A, Suar M. Biological effects of green-synthesized metal nanoparticles: a mechanistic view of antibacterial activity and cytotoxicity. In: Advanced Nanostructured Materials for Environmental Remediation. Environmental Chemistry for a Sustainable World, Vol 25. Naushad MRajendran SGracia F (Eds). Springer, Cham, Switzerland (2019).Crossref, Google Scholar15. Verma SK, Jha E, Panda PK et al. Molecular investigation to RNA and protein based interaction induced in vivo biocompatibility of phytofabricated AuNP with embryonic zebrafish. Artif. Cells Nanomed. Biotechnol. 46(Suppl. 3), S671–S684 (2018).Crossref, Medline, CAS, Google Scholar16. Makkar H, Verma SK, Panda PK et al. In vivo molecular toxicity profile of dental bioceramics in embryonic zebrafish (Danio rerio). Chem. Res. Toxicol. 31(9), 914–923 (2018).Crossref, Medline, CAS, Google Scholar17. Kumari S, Kumari P, Panda PK, Pramanik N, Verma SK, Mallick MA. Molecular aspect of phytofabrication of gold nanoparticle from Andrographis peniculata photosystem II and their in vivo biological effect on embryonic zebrafish (Danio rerio). Environ. Nanotechnol. Monit. Manag. 11, 100201 (2019).Google Scholar18. Das BK, Verma SK, Das T et al. Altered electrical properties with controlled copper doping in ZnO nanoparticles infers their cytotoxicity in macrophages by ROS induction and apoptosis. Chem. Biol. Interact. 297, 141–154 (2019).Crossref, Medline, CAS, Google Scholar19. Makkar H, Verma SK, Panda PK, Pramanik N, Jha E, Suar M. Molecular insight to size and dose-dependent cellular toxicity exhibited by a green synthesized bioceramic nanohybrid with macrophages for dental applications. Toxicol. Res. (Camb.) 7(5), 959–969 (2018).Crossref, Medline, CAS, Google Scholar20. Sarkar B, Verma SK, Akhtar J et al. Molecular aspect of silver nanoparticles regulated embryonic development in zebrafish (Danio rerio) by Oct-4 expression. Chemosphere 206, 560–567 (2018).Crossref, Medline, CAS, Google Scholar21. Verma SK, Jha E, Sahoo B et al. Mechanistic insight into the rapid one-step facile biofabrication of antibacterial silver nanoparticles from bacterial release and their biogenicity and concentration-dependent in vitro cytotoxicity to colon cells. RSC Adv. 7(64), 40034–40045 (2017).Crossref, CAS, Google Scholar22. Paul P, Verma SK, Kumar Panda P, Jaiswal S, Sahu BR, Suar M. Molecular insight to influential role of Hha–TomB toxin–antitoxin system for antibacterial activity of biogenic silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46(Suppl. 3), S572–S584 (2018).Crossref, Medline, CAS, Google Scholar23. Kumari S, Kumari P, Panda PK et al. Biocompatible biogenic silver nanoparticles interact with caspases on an atomic level to elicit apoptosis. Nanomedicine (Lond.) 15(22), 2119–2132 (2020).Abstract, CAS, Google Scholar24. Sheel R, Kumari P, Panda PK et al. Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo biocompatibility of P. niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environ. Pollut. 267, 115482 (2020).Crossref, Medline, CAS, Google Scholar25. Cai K, Wang AZ, Yin L, Cheng J. Bio-nano interface: the impact of biological environment on nanomaterials and their delivery properties. J. Control. Release 263, 211–222 (2017).Crossref, Medline, CAS, Google Scholar26. Wang W, Sedykh A, Sun H et al. Predicting nano–bio interactions by integrating nanoparticle libraries and quantitative nanostructure activity relationship modeling. ACS Nano 11(12), 12641–12649 (2017).Crossref, Medline, CAS, Google Scholar27. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J. Nanobiotechnology 11(1), 26 (2013).Crossref, Medline, CAS, Google Scholar28. Bai X, Liu F, Liu Y et al. Toward a systematic exploration of nano-bio interactions. Toxicol. Appl. Pharmacol. 323, 66–73 (2017).Crossref, Medline, CAS, Google Scholar29. González-Nilo F, Pérez-Acle T, Guínez-Molinos S et al. Nanoinformatics: an emerging area of information technology at the intersection of bioinformatics, computational chemistry and nanobiotechnology. Biol. Res. 44(1), 43–51 (2011).Crossref, Medline, Google Scholar30. Verma SK, Jha E, Panda PK et al. Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine (Lond.) 13(1), 43–68 (2013).Link, Google Scholar31. Verma SK, Panda PK, Jha E, Suar M, Parashar SKS. Altered physiochemical properties in industrially synthesized ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis. Sci. Rep. 7(1), 13909 (2017).Crossref, Medline, Google Scholar32. Verma SK, Jha E, Panda PK et al. Rapid novel facile biosynthesized silver nanoparticles from bacterial release induce biogenicity and concentration dependent in vivo cytotoxicity with embryonic Zebrafish – a mechanistic insight. Toxicol. Sci. 161(1), 125–138 (2018).Crossref, Medline, CAS, Google Scholar33. Ezraty B, Gennaris A, Barras F, Collet JF. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 15(7), 385–396 (2017).Crossref, Medline, CAS, Google Scholar34. Verga LG, Skylaris CK. DFT modeling of metallic nanoparticles. In: Computational Modelling of Nanoparticles (Volume 12). Bromley STWoodley SM (Eds). Elsevier, Amsterdam, The Netherlands, 239–293 (2018).Crossref, Google Scholar35. Wozniak AJ, Schwartz AG. The risk of second primary lung cancer: an unsolved dilemma. Transl. Lung Cancer Res. 7(Suppl. 1), S54–S56 (2018).Crossref, Medline, Google Scholar36. Waldvogel FA. Infectious diseases in the 21st century: old challenges and new opportunities. Int. J. Infect. Dis. 8(1), 5–12 (2004).Crossref, Medline, Google Scholar37. Bainbridge WS. Managing Nano–Bio–Info–Cogno Innovations. Springer, Dordrecht, The Netherlands (2006).Crossref, Google Scholar38. Cheng LC, Jiang X, Wang J, Chen C, Liu RS. Nano–bio effects: interaction of nanomaterials with cells. Nanoscale 5(9), 3547–3569 (2013).Crossref, Medline, CAS, Google Scholar39. Kirkpatrick CJ, Bonfield W. NanoBioInterface: a multidisciplinary challenge. J. R. Soc. Interface 7(Suppl. 1), S1–S4 (2010).Medline, Google Scholar40. Byrne HJ, Mukherjee SP, Naha PC. Nano–bio interactions: nanomedicine and nanotoxicology. Int. J. Environ. Res. Public Health 15(6), 1222 (2018).Crossref, Google ScholarFiguresReferencesRelatedDetails Vol. 16, No. 25 Follow us on social media for the latest updates Metrics Downloaded 76 times History Received 3 May 2021 Accepted 13 August 2021 Published online 21 September 2021 Published in print October 2021 Information© 2021 Future Medicine LtdKeywordsbio interactionsbionomicsnano–bio interfacenanomaterialsnanomedicinenanotechnologyprotein coronaFinancial & competing interests disclosureThe authors thank Carl Tryggers Stiftelse för Vetenskaplig Forskning and Swedish Research Council (VR-2016-06014) for their financial support. The authors also acknowledge the infrastructure support provided by the Department of Biotechnology, government of India (BT/INF/22/SP42155/2021) at Kalinga Institute of Industrial Technology. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W3201631844 created "2021-09-27" @default.
- W3201631844 creator A5008193884 @default.
- W3201631844 creator A5022598096 @default.
- W3201631844 creator A5085725866 @default.
- W3201631844 date "2021-10-01" @default.
- W3201631844 modified "2023-10-16" @default.
- W3201631844 title "Nanoparticle–biological interactions: the renaissance of bionomics in the myriad nanomedical technologies" @default.
- W3201631844 cites W1531664002 @default.
- W3201631844 cites W2021949334 @default.
- W3201631844 cites W2098514162 @default.
- W3201631844 cites W2110634891 @default.
- W3201631844 cites W2113971563 @default.
- W3201631844 cites W2121882814 @default.
- W3201631844 cites W2124688926 @default.
- W3201631844 cites W2152939542 @default.
- W3201631844 cites W2154952911 @default.
- W3201631844 cites W2158558808 @default.
- W3201631844 cites W2388009875 @default.
- W3201631844 cites W2478957367 @default.
- W3201631844 cites W2570563263 @default.
- W3201631844 cites W2602890096 @default.
- W3201631844 cites W2606757801 @default.
- W3201631844 cites W2749005698 @default.
- W3201631844 cites W2759428424 @default.
- W3201631844 cites W2767189785 @default.
- W3201631844 cites W2768924909 @default.
- W3201631844 cites W2770722548 @default.
- W3201631844 cites W2785944651 @default.
- W3201631844 cites W2800052908 @default.
- W3201631844 cites W2805919681 @default.
- W3201631844 cites W2809554118 @default.
- W3201631844 cites W2887648830 @default.
- W3201631844 cites W2891681740 @default.
- W3201631844 cites W2896201029 @default.
- W3201631844 cites W2900294524 @default.
- W3201631844 cites W2901471691 @default.
- W3201631844 cites W2921510581 @default.
- W3201631844 cites W2947206080 @default.
- W3201631844 cites W3034820810 @default.
- W3201631844 cites W3046146105 @default.
- W3201631844 cites W3081277199 @default.
- W3201631844 cites W3162374612 @default.
- W3201631844 doi "https://doi.org/10.2217/nnm-2021-0174" @default.
- W3201631844 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34544260" @default.
- W3201631844 hasPublicationYear "2021" @default.
- W3201631844 type Work @default.
- W3201631844 sameAs 3201631844 @default.
- W3201631844 citedByCount "12" @default.
- W3201631844 countsByYear W32016318442022 @default.
- W3201631844 countsByYear W32016318442023 @default.
- W3201631844 crossrefType "journal-article" @default.
- W3201631844 hasAuthorship W3201631844A5008193884 @default.
- W3201631844 hasAuthorship W3201631844A5022598096 @default.
- W3201631844 hasAuthorship W3201631844A5085725866 @default.
- W3201631844 hasConcept C142362112 @default.
- W3201631844 hasConcept C171250308 @default.
- W3201631844 hasConcept C173758957 @default.
- W3201631844 hasConcept C18903297 @default.
- W3201631844 hasConcept C192562407 @default.
- W3201631844 hasConcept C20137635 @default.
- W3201631844 hasConcept C52069626 @default.
- W3201631844 hasConcept C52119013 @default.
- W3201631844 hasConcept C86803240 @default.
- W3201631844 hasConceptScore W3201631844C142362112 @default.
- W3201631844 hasConceptScore W3201631844C171250308 @default.
- W3201631844 hasConceptScore W3201631844C173758957 @default.
- W3201631844 hasConceptScore W3201631844C18903297 @default.
- W3201631844 hasConceptScore W3201631844C192562407 @default.
- W3201631844 hasConceptScore W3201631844C20137635 @default.
- W3201631844 hasConceptScore W3201631844C52069626 @default.
- W3201631844 hasConceptScore W3201631844C52119013 @default.
- W3201631844 hasConceptScore W3201631844C86803240 @default.
- W3201631844 hasFunder F4320320717 @default.
- W3201631844 hasFunder F4320321501 @default.
- W3201631844 hasFunder F4320322581 @default.
- W3201631844 hasIssue "25" @default.
- W3201631844 hasLocation W32016318441 @default.
- W3201631844 hasOpenAccess W3201631844 @default.
- W3201631844 hasPrimaryLocation W32016318441 @default.
- W3201631844 hasRelatedWork W143435509 @default.
- W3201631844 hasRelatedWork W2003812320 @default.
- W3201631844 hasRelatedWork W2012325560 @default.
- W3201631844 hasRelatedWork W2266604781 @default.
- W3201631844 hasRelatedWork W2332191455 @default.
- W3201631844 hasRelatedWork W2353428634 @default.
- W3201631844 hasRelatedWork W2390850399 @default.
- W3201631844 hasRelatedWork W2391770087 @default.
- W3201631844 hasRelatedWork W2393564718 @default.
- W3201631844 hasRelatedWork W633137892 @default.
- W3201631844 hasVolume "16" @default.
- W3201631844 isParatext "false" @default.
- W3201631844 isRetracted "false" @default.
- W3201631844 magId "3201631844" @default.
- W3201631844 workType "article" @default.