Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201634814> ?p ?o ?g. }
- W3201634814 endingPage "1686" @default.
- W3201634814 startingPage "1686" @default.
- W3201634814 abstract "Differentiation between transient osteoporosis (TOH) and avascular necrosis (AVN) of the hip is a longstanding challenge in musculoskeletal radiology. The purpose of this study was to utilize MRI-based radiomics and machine learning (ML) for accurate differentiation between the two entities. A total of 109 hips with TOH and 104 hips with AVN were retrospectively included. Femoral heads and necks with segmented radiomics features were extracted. Three ML classifiers (XGboost, CatBoost and SVM) using 38 relevant radiomics features were trained on 70% and validated on 30% of the dataset. ML performance was compared to two musculoskeletal radiologists, a general radiologist and two radiology residents. XGboost achieved the best performance with an area under the curve (AUC) of 93.7% (95% CI from 87.7 to 99.8%) among ML models. MSK radiologists achieved an AUC of 90.6% (95% CI from 86.7% to 94.5%) and 88.3% (95% CI from 84% to 92.7%), respectively, similar to residents. The general radiologist achieved an AUC of 84.5% (95% CI from 80% to 89%), significantly lower than of XGboost (p = 0.017). In conclusion, radiomics-based ML achieved a performance similar to MSK radiologists and significantly higher compared to general radiologists in differentiating between TOH and AVN." @default.
- W3201634814 created "2021-09-27" @default.
- W3201634814 creator A5014640458 @default.
- W3201634814 creator A5016219588 @default.
- W3201634814 creator A5036083621 @default.
- W3201634814 creator A5036457707 @default.
- W3201634814 creator A5040027089 @default.
- W3201634814 creator A5057234812 @default.
- W3201634814 creator A5062636609 @default.
- W3201634814 creator A5067365764 @default.
- W3201634814 creator A5073851341 @default.
- W3201634814 creator A5075362863 @default.
- W3201634814 creator A5078341846 @default.
- W3201634814 date "2021-09-15" @default.
- W3201634814 modified "2023-10-14" @default.
- W3201634814 title "Radiomics and Machine Learning Can Differentiate Transient Osteoporosis from Avascular Necrosis of the Hip" @default.
- W3201634814 cites W1968630566 @default.
- W3201634814 cites W1994662037 @default.
- W3201634814 cites W2008567174 @default.
- W3201634814 cites W2023601554 @default.
- W3201634814 cites W2066008398 @default.
- W3201634814 cites W2083541283 @default.
- W3201634814 cites W2102274615 @default.
- W3201634814 cites W2124197262 @default.
- W3201634814 cites W2156665896 @default.
- W3201634814 cites W2328176404 @default.
- W3201634814 cites W2558492693 @default.
- W3201634814 cites W2619369391 @default.
- W3201634814 cites W2766438525 @default.
- W3201634814 cites W2770919879 @default.
- W3201634814 cites W2790526513 @default.
- W3201634814 cites W2904191532 @default.
- W3201634814 cites W2955446367 @default.
- W3201634814 cites W2964081769 @default.
- W3201634814 cites W2968849816 @default.
- W3201634814 cites W2975603936 @default.
- W3201634814 cites W2999983340 @default.
- W3201634814 cites W3013294478 @default.
- W3201634814 cites W3022680805 @default.
- W3201634814 cites W3023768124 @default.
- W3201634814 cites W3036187679 @default.
- W3201634814 cites W3048802680 @default.
- W3201634814 cites W3105251098 @default.
- W3201634814 cites W3110425125 @default.
- W3201634814 cites W3122136738 @default.
- W3201634814 cites W3134526570 @default.
- W3201634814 cites W3141739572 @default.
- W3201634814 cites W4214540058 @default.
- W3201634814 doi "https://doi.org/10.3390/diagnostics11091686" @default.
- W3201634814 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8468167" @default.
- W3201634814 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34574027" @default.
- W3201634814 hasPublicationYear "2021" @default.
- W3201634814 type Work @default.
- W3201634814 sameAs 3201634814 @default.
- W3201634814 citedByCount "14" @default.
- W3201634814 countsByYear W32016348142022 @default.
- W3201634814 countsByYear W32016348142023 @default.
- W3201634814 crossrefType "journal-article" @default.
- W3201634814 hasAuthorship W3201634814A5014640458 @default.
- W3201634814 hasAuthorship W3201634814A5016219588 @default.
- W3201634814 hasAuthorship W3201634814A5036083621 @default.
- W3201634814 hasAuthorship W3201634814A5036457707 @default.
- W3201634814 hasAuthorship W3201634814A5040027089 @default.
- W3201634814 hasAuthorship W3201634814A5057234812 @default.
- W3201634814 hasAuthorship W3201634814A5062636609 @default.
- W3201634814 hasAuthorship W3201634814A5067365764 @default.
- W3201634814 hasAuthorship W3201634814A5073851341 @default.
- W3201634814 hasAuthorship W3201634814A5075362863 @default.
- W3201634814 hasAuthorship W3201634814A5078341846 @default.
- W3201634814 hasBestOaLocation W32016348141 @default.
- W3201634814 hasConcept C126322002 @default.
- W3201634814 hasConcept C126838900 @default.
- W3201634814 hasConcept C141071460 @default.
- W3201634814 hasConcept C2776541429 @default.
- W3201634814 hasConcept C2777560053 @default.
- W3201634814 hasConcept C2778559731 @default.
- W3201634814 hasConcept C2779100257 @default.
- W3201634814 hasConcept C71924100 @default.
- W3201634814 hasConceptScore W3201634814C126322002 @default.
- W3201634814 hasConceptScore W3201634814C126838900 @default.
- W3201634814 hasConceptScore W3201634814C141071460 @default.
- W3201634814 hasConceptScore W3201634814C2776541429 @default.
- W3201634814 hasConceptScore W3201634814C2777560053 @default.
- W3201634814 hasConceptScore W3201634814C2778559731 @default.
- W3201634814 hasConceptScore W3201634814C2779100257 @default.
- W3201634814 hasConceptScore W3201634814C71924100 @default.
- W3201634814 hasIssue "9" @default.
- W3201634814 hasLocation W32016348141 @default.
- W3201634814 hasLocation W32016348142 @default.
- W3201634814 hasLocation W32016348143 @default.
- W3201634814 hasLocation W32016348144 @default.
- W3201634814 hasOpenAccess W3201634814 @default.
- W3201634814 hasPrimaryLocation W32016348141 @default.
- W3201634814 hasRelatedWork W1506200166 @default.
- W3201634814 hasRelatedWork W1995515455 @default.
- W3201634814 hasRelatedWork W2048182022 @default.
- W3201634814 hasRelatedWork W2080531066 @default.
- W3201634814 hasRelatedWork W2604872355 @default.