Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201635221> ?p ?o ?g. }
- W3201635221 endingPage "32875" @default.
- W3201635221 startingPage "32875" @default.
- W3201635221 abstract "Hyperspectral image classification (HIC) is an active research topic in remote sensing. Hyperspectral images typically generate large data cubes posing big challenges in data acquisition, storage, transmission and processing. To overcome these limitations, this paper develops a novel deep learning HIC approach based on compressive measurements of coded-aperture snapshot spectral imagers (CASSI), without reconstructing the complete hyperspectral data cube. A new kind of deep learning strategy, namely 3D coded convolutional neural network (3D-CCNN), is proposed to efficiently solve for the classification problem, where the hardware-based coded aperture is regarded as a pixel-wise connected network layer. An end-to-end training method is developed to jointly optimize the network parameters and the coded apertures with periodic structures. The accuracy of classification is effectively improved by exploiting the synergy between the deep learning network and coded apertures. The superiority of the proposed method is assessed over the state-of-the-art HIC methods on several hyperspectral datasets." @default.
- W3201635221 created "2021-09-27" @default.
- W3201635221 creator A5005357824 @default.
- W3201635221 creator A5031836304 @default.
- W3201635221 creator A5040146231 @default.
- W3201635221 creator A5042589839 @default.
- W3201635221 date "2021-09-27" @default.
- W3201635221 modified "2023-10-16" @default.
- W3201635221 title "Compressive hyperspectral image classification using a 3D coded convolutional neural network" @default.
- W3201635221 cites W1521436688 @default.
- W3201635221 cites W1975622988 @default.
- W3201635221 cites W1985051078 @default.
- W3201635221 cites W1991024374 @default.
- W3201635221 cites W1992653101 @default.
- W3201635221 cites W1993312340 @default.
- W3201635221 cites W1997565609 @default.
- W3201635221 cites W2002498099 @default.
- W3201635221 cites W2011813002 @default.
- W3201635221 cites W2015511957 @default.
- W3201635221 cites W2028349405 @default.
- W3201635221 cites W2031955522 @default.
- W3201635221 cites W2079319869 @default.
- W3201635221 cites W2084591647 @default.
- W3201635221 cites W2087263574 @default.
- W3201635221 cites W2095687521 @default.
- W3201635221 cites W2097915756 @default.
- W3201635221 cites W2109449402 @default.
- W3201635221 cites W2136251662 @default.
- W3201635221 cites W2154240401 @default.
- W3201635221 cites W2161772257 @default.
- W3201635221 cites W2163398148 @default.
- W3201635221 cites W2500751094 @default.
- W3201635221 cites W2511401065 @default.
- W3201635221 cites W2556661275 @default.
- W3201635221 cites W2809900749 @default.
- W3201635221 cites W2903472399 @default.
- W3201635221 cites W2914331134 @default.
- W3201635221 cites W2991616716 @default.
- W3201635221 cites W3012213719 @default.
- W3201635221 cites W3104915271 @default.
- W3201635221 cites W3105357426 @default.
- W3201635221 cites W3107308400 @default.
- W3201635221 cites W3171952126 @default.
- W3201635221 doi "https://doi.org/10.1364/oe.437717" @default.
- W3201635221 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34809110" @default.
- W3201635221 hasPublicationYear "2021" @default.
- W3201635221 type Work @default.
- W3201635221 sameAs 3201635221 @default.
- W3201635221 citedByCount "6" @default.
- W3201635221 countsByYear W32016352212022 @default.
- W3201635221 countsByYear W32016352212023 @default.
- W3201635221 crossrefType "journal-article" @default.
- W3201635221 hasAuthorship W3201635221A5005357824 @default.
- W3201635221 hasAuthorship W3201635221A5031836304 @default.
- W3201635221 hasAuthorship W3201635221A5040146231 @default.
- W3201635221 hasAuthorship W3201635221A5042589839 @default.
- W3201635221 hasBestOaLocation W32016352211 @default.
- W3201635221 hasConcept C108583219 @default.
- W3201635221 hasConcept C111919701 @default.
- W3201635221 hasConcept C124101348 @default.
- W3201635221 hasConcept C153180895 @default.
- W3201635221 hasConcept C154945302 @default.
- W3201635221 hasConcept C159078339 @default.
- W3201635221 hasConcept C160633673 @default.
- W3201635221 hasConcept C168781493 @default.
- W3201635221 hasConcept C2779464207 @default.
- W3201635221 hasConcept C31972630 @default.
- W3201635221 hasConcept C41008148 @default.
- W3201635221 hasConcept C50644808 @default.
- W3201635221 hasConcept C55282118 @default.
- W3201635221 hasConcept C76155785 @default.
- W3201635221 hasConcept C78168278 @default.
- W3201635221 hasConcept C78660771 @default.
- W3201635221 hasConcept C81363708 @default.
- W3201635221 hasConcept C94915269 @default.
- W3201635221 hasConceptScore W3201635221C108583219 @default.
- W3201635221 hasConceptScore W3201635221C111919701 @default.
- W3201635221 hasConceptScore W3201635221C124101348 @default.
- W3201635221 hasConceptScore W3201635221C153180895 @default.
- W3201635221 hasConceptScore W3201635221C154945302 @default.
- W3201635221 hasConceptScore W3201635221C159078339 @default.
- W3201635221 hasConceptScore W3201635221C160633673 @default.
- W3201635221 hasConceptScore W3201635221C168781493 @default.
- W3201635221 hasConceptScore W3201635221C2779464207 @default.
- W3201635221 hasConceptScore W3201635221C31972630 @default.
- W3201635221 hasConceptScore W3201635221C41008148 @default.
- W3201635221 hasConceptScore W3201635221C50644808 @default.
- W3201635221 hasConceptScore W3201635221C55282118 @default.
- W3201635221 hasConceptScore W3201635221C76155785 @default.
- W3201635221 hasConceptScore W3201635221C78168278 @default.
- W3201635221 hasConceptScore W3201635221C78660771 @default.
- W3201635221 hasConceptScore W3201635221C81363708 @default.
- W3201635221 hasConceptScore W3201635221C94915269 @default.
- W3201635221 hasFunder F4320335787 @default.
- W3201635221 hasIssue "21" @default.
- W3201635221 hasLocation W32016352211 @default.
- W3201635221 hasLocation W32016352212 @default.
- W3201635221 hasLocation W32016352213 @default.