Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201636341> ?p ?o ?g. }
- W3201636341 endingPage "10" @default.
- W3201636341 startingPage "1" @default.
- W3201636341 abstract "This paper proposes a load forecasting method based on LSTM model, fully explores the regularity of historical load data of industrial park enterprises, inputs the data features into LSTM units for feature extraction, and applies the attention-based model for load forecasting. The experiments show that the accuracy of our prediction model and early warning model is better than that of the baseline and can reach the standard of application in practice; this model can also be used for early warning of local sudden large loads and identification of enterprise power demand. Therefore, the validity of the method proposed in this paper is verified using the historical dataset of industrial parks, and relevant technical products and business models are formed to provide value-added services to users by combining existing practical cases for the specific scenario of industrial parks." @default.
- W3201636341 created "2021-09-27" @default.
- W3201636341 creator A5025167286 @default.
- W3201636341 creator A5037317928 @default.
- W3201636341 creator A5051034219 @default.
- W3201636341 date "2021-09-10" @default.
- W3201636341 modified "2023-10-16" @default.
- W3201636341 title "Short-Term Electric Load Prediction and Early Warning in Industrial Parks Based on Neural Network" @default.
- W3201636341 cites W1793209788 @default.
- W3201636341 cites W1969043823 @default.
- W3201636341 cites W2044897326 @default.
- W3201636341 cites W2064675550 @default.
- W3201636341 cites W2088315339 @default.
- W3201636341 cites W2165627882 @default.
- W3201636341 cites W2321536237 @default.
- W3201636341 cites W2617994209 @default.
- W3201636341 cites W2754252319 @default.
- W3201636341 cites W2792579400 @default.
- W3201636341 cites W2805797750 @default.
- W3201636341 cites W2883144926 @default.
- W3201636341 cites W2897453944 @default.
- W3201636341 cites W2949842782 @default.
- W3201636341 cites W2953233651 @default.
- W3201636341 cites W2955529518 @default.
- W3201636341 cites W2994239313 @default.
- W3201636341 cites W2999807795 @default.
- W3201636341 cites W3033406500 @default.
- W3201636341 cites W3046580686 @default.
- W3201636341 cites W3082364894 @default.
- W3201636341 cites W3096590460 @default.
- W3201636341 cites W3097780056 @default.
- W3201636341 cites W3103064492 @default.
- W3201636341 cites W3113689553 @default.
- W3201636341 cites W3118625182 @default.
- W3201636341 cites W3134483836 @default.
- W3201636341 cites W3159563731 @default.
- W3201636341 cites W4238946658 @default.
- W3201636341 doi "https://doi.org/10.1155/2021/1435334" @default.
- W3201636341 hasPublicationYear "2021" @default.
- W3201636341 type Work @default.
- W3201636341 sameAs 3201636341 @default.
- W3201636341 citedByCount "1" @default.
- W3201636341 countsByYear W32016363412022 @default.
- W3201636341 crossrefType "journal-article" @default.
- W3201636341 hasAuthorship W3201636341A5025167286 @default.
- W3201636341 hasAuthorship W3201636341A5037317928 @default.
- W3201636341 hasAuthorship W3201636341A5051034219 @default.
- W3201636341 hasBestOaLocation W32016363411 @default.
- W3201636341 hasConcept C111368507 @default.
- W3201636341 hasConcept C116834253 @default.
- W3201636341 hasConcept C121332964 @default.
- W3201636341 hasConcept C124101348 @default.
- W3201636341 hasConcept C12725497 @default.
- W3201636341 hasConcept C127313418 @default.
- W3201636341 hasConcept C127413603 @default.
- W3201636341 hasConcept C13736549 @default.
- W3201636341 hasConcept C154945302 @default.
- W3201636341 hasConcept C163258240 @default.
- W3201636341 hasConcept C17744445 @default.
- W3201636341 hasConcept C199539241 @default.
- W3201636341 hasConcept C2781305714 @default.
- W3201636341 hasConcept C29825287 @default.
- W3201636341 hasConcept C40293303 @default.
- W3201636341 hasConcept C41008148 @default.
- W3201636341 hasConcept C50644808 @default.
- W3201636341 hasConcept C59822182 @default.
- W3201636341 hasConcept C61797465 @default.
- W3201636341 hasConcept C62520636 @default.
- W3201636341 hasConcept C76155785 @default.
- W3201636341 hasConcept C77715397 @default.
- W3201636341 hasConcept C86803240 @default.
- W3201636341 hasConceptScore W3201636341C111368507 @default.
- W3201636341 hasConceptScore W3201636341C116834253 @default.
- W3201636341 hasConceptScore W3201636341C121332964 @default.
- W3201636341 hasConceptScore W3201636341C124101348 @default.
- W3201636341 hasConceptScore W3201636341C12725497 @default.
- W3201636341 hasConceptScore W3201636341C127313418 @default.
- W3201636341 hasConceptScore W3201636341C127413603 @default.
- W3201636341 hasConceptScore W3201636341C13736549 @default.
- W3201636341 hasConceptScore W3201636341C154945302 @default.
- W3201636341 hasConceptScore W3201636341C163258240 @default.
- W3201636341 hasConceptScore W3201636341C17744445 @default.
- W3201636341 hasConceptScore W3201636341C199539241 @default.
- W3201636341 hasConceptScore W3201636341C2781305714 @default.
- W3201636341 hasConceptScore W3201636341C29825287 @default.
- W3201636341 hasConceptScore W3201636341C40293303 @default.
- W3201636341 hasConceptScore W3201636341C41008148 @default.
- W3201636341 hasConceptScore W3201636341C50644808 @default.
- W3201636341 hasConceptScore W3201636341C59822182 @default.
- W3201636341 hasConceptScore W3201636341C61797465 @default.
- W3201636341 hasConceptScore W3201636341C62520636 @default.
- W3201636341 hasConceptScore W3201636341C76155785 @default.
- W3201636341 hasConceptScore W3201636341C77715397 @default.
- W3201636341 hasConceptScore W3201636341C86803240 @default.
- W3201636341 hasFunder F4320335984 @default.
- W3201636341 hasLocation W32016363411 @default.
- W3201636341 hasLocation W32016363412 @default.
- W3201636341 hasOpenAccess W3201636341 @default.