Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201640799> ?p ?o ?g. }
- W3201640799 endingPage "9449" @default.
- W3201640799 startingPage "9435" @default.
- W3201640799 abstract "Recently, deep learning-based methods are proposed for hyperspectral images (HSIs) denoising. Among them, unsupervised methods such as deep image prior (DIP)-based methods have received much attention because these methods do not require any training data. However, DIP-based methods suffer from the semi-convergence behavior, i.e., the iteration of DIP-based methods needs to terminate by referring to the ground-truth image at the optimal iteration point. In this paper, we propose the spatial-spectral constrained deep image prior (S2DIP) for the HSI mixed noise removal. Specifically, we integrate the DIP, the spatial-spectral total variation regularization term, and the l1-norm sparse term to respectively capture the deep prior of the clean HSI, the spatial-spectral local smooth prior of the clean HSI, and the sparse prior of noise. The proposed S2DIP jointly leverages the expressive power brought from the deep convolutional neural network without any training data and exploits the HSI and noise structures via hand-crafted priors. Thus, our method avoids the semi-convergence behavior of DIP-based methods. Meanwhile, our method largely enhances the HSI denoising ability of DIP-based methods. To tackle the corresponding model, we utilize the alternating direction multiplier method algorithm. Extensive experiments demonstrate that our method outperforms model-based and deep learning-based state-of-the-art HSI denoising methods." @default.
- W3201640799 created "2021-09-27" @default.
- W3201640799 creator A5011715660 @default.
- W3201640799 creator A5036399063 @default.
- W3201640799 creator A5037421955 @default.
- W3201640799 creator A5049349192 @default.
- W3201640799 date "2021-01-01" @default.
- W3201640799 modified "2023-10-16" @default.
- W3201640799 title "Hyperspectral Mixed Noise Removal via Spatial-Spectral Constrained Unsupervised Deep Image Prior" @default.
- W3201640799 cites W1944540851 @default.
- W3201640799 cites W1974438823 @default.
- W3201640799 cites W1978749115 @default.
- W3201640799 cites W1994040806 @default.
- W3201640799 cites W2039596145 @default.
- W3201640799 cites W2051968191 @default.
- W3201640799 cites W2095906131 @default.
- W3201640799 cites W2100109944 @default.
- W3201640799 cites W2162276208 @default.
- W3201640799 cites W2194775991 @default.
- W3201640799 cites W2289756263 @default.
- W3201640799 cites W2323291280 @default.
- W3201640799 cites W2536599074 @default.
- W3201640799 cites W2565499339 @default.
- W3201640799 cites W2574952845 @default.
- W3201640799 cites W2598997103 @default.
- W3201640799 cites W2604977491 @default.
- W3201640799 cites W2743606449 @default.
- W3201640799 cites W2747865121 @default.
- W3201640799 cites W2761385227 @default.
- W3201640799 cites W2764323333 @default.
- W3201640799 cites W2768095459 @default.
- W3201640799 cites W2790528326 @default.
- W3201640799 cites W2792111852 @default.
- W3201640799 cites W2806155925 @default.
- W3201640799 cites W2888632407 @default.
- W3201640799 cites W2901807228 @default.
- W3201640799 cites W2901913663 @default.
- W3201640799 cites W2912083599 @default.
- W3201640799 cites W2914736033 @default.
- W3201640799 cites W2944375193 @default.
- W3201640799 cites W2953843381 @default.
- W3201640799 cites W2963426457 @default.
- W3201640799 cites W2963820951 @default.
- W3201640799 cites W2964013315 @default.
- W3201640799 cites W2964146769 @default.
- W3201640799 cites W2964179170 @default.
- W3201640799 cites W2970683532 @default.
- W3201640799 cites W2972301798 @default.
- W3201640799 cites W2973217146 @default.
- W3201640799 cites W2975506318 @default.
- W3201640799 cites W2977894483 @default.
- W3201640799 cites W2979001238 @default.
- W3201640799 cites W2982007765 @default.
- W3201640799 cites W2984522085 @default.
- W3201640799 cites W2986829670 @default.
- W3201640799 cites W2996085728 @default.
- W3201640799 cites W2998841120 @default.
- W3201640799 cites W3004433344 @default.
- W3201640799 cites W3004925702 @default.
- W3201640799 cites W3012136461 @default.
- W3201640799 cites W3016244469 @default.
- W3201640799 cites W3016296267 @default.
- W3201640799 cites W3022346097 @default.
- W3201640799 cites W3032341357 @default.
- W3201640799 cites W3034185665 @default.
- W3201640799 cites W3035189891 @default.
- W3201640799 cites W3035318978 @default.
- W3201640799 cites W3042671644 @default.
- W3201640799 cites W3103919952 @default.
- W3201640799 cites W3118496544 @default.
- W3201640799 cites W3118914778 @default.
- W3201640799 cites W3120342934 @default.
- W3201640799 cites W3131515870 @default.
- W3201640799 cites W3133774295 @default.
- W3201640799 cites W3134334503 @default.
- W3201640799 cites W3154512708 @default.
- W3201640799 cites W3154593456 @default.
- W3201640799 cites W3198251760 @default.
- W3201640799 cites W3198865231 @default.
- W3201640799 cites W3199991419 @default.
- W3201640799 doi "https://doi.org/10.1109/jstars.2021.3111404" @default.
- W3201640799 hasPublicationYear "2021" @default.
- W3201640799 type Work @default.
- W3201640799 sameAs 3201640799 @default.
- W3201640799 citedByCount "11" @default.
- W3201640799 countsByYear W32016407992021 @default.
- W3201640799 countsByYear W32016407992022 @default.
- W3201640799 countsByYear W32016407992023 @default.
- W3201640799 crossrefType "journal-article" @default.
- W3201640799 hasAuthorship W3201640799A5011715660 @default.
- W3201640799 hasAuthorship W3201640799A5036399063 @default.
- W3201640799 hasAuthorship W3201640799A5037421955 @default.
- W3201640799 hasAuthorship W3201640799A5049349192 @default.
- W3201640799 hasBestOaLocation W32016407991 @default.
- W3201640799 hasConcept C107673813 @default.
- W3201640799 hasConcept C108583219 @default.
- W3201640799 hasConcept C115961682 @default.
- W3201640799 hasConcept C153180895 @default.